

GovReady-Q Documentation

Note

This documentation set is part of GovReady v0.9.0. In places, it may still refer to v0.8.6 software features rather than v0.9.0 features. Thank you for your patience while we update the documentation to apply to the v0.9.0 software. Pull requests are very welcome!

The GovReady-Q Compliance Server is an open source GRC platform for highly automated, user-friendly, self-service compliance assessments and documentation. It’s perfect for DevSecOps.

GovReady-Q solves the painful compliance bottleneck of needing months to authorize applications that deploy and redeploy in minutes.

The code is open source, and available on GitHub [https://github.com/GovReady/govready-q].

Attention

GovReady-Q is in Beta. Suggested for DevSecOps early adopters needing Compliance-as-Code.

Contents:

	About GovReady-Q

	Deploying GovReady-Q

	Permissions

	Authoring Compliance Apps

	Automation API

	Data Design Guide

	Testing

	Version 0.9.0

	Migration Guide for GovReady-Q v0.8.6 to v0.9.0

Indices and tables

	Index

	Module Index

	Search Page

About GovReady-Q

Why GovReady-Q?

 Deploying GovReady-Q

Deploying GovReady-Q

	System Requirements
	Software Requirements

	Hardware Requirements

	Installing GovReady-Q
	Deploying with Docker
	Quickstart

	Additional Details
	Notes and Common Issues

	Advanced configuration of GovReady-Q inside Docker
	Changing the hostname and port
	The public address (as users see it)

	The address that the container is bound to

	Persistent database
	Sqlite file

	Remote database

	Configuring email

	Container management and other options

	Adding and developing compliance apps

	Logs for Debugging

	Production deployment of the Docker container

	Secure deployments

	Other management commands

	Updating to a new release of GovReady-Q

	Environment variables for launching the container without our run script

	Running tests

	Populating sample data for manual testing and verification

	Deploying on macOS
	Quickstart

	Additional Details

	Deploying on RHEL 7 / CentOS 7 / Amazon Linux 2
	Quickstart

	Additional Details
	Deployment utilities

	Creating a UNIX user named govready-q

	Upgrading pip

	Installing as UNIX user named govready-q

	Installing drivers for Postgres, MySQL

	Deploying on Ubuntu
	Quickstart

	Additional Details
	Deployment utilities

	Creating a UNIX user named govready-q

	Installing drivers for Postgres, MySQL

	local/environment.json

	Deploying on Windows (with Docker)
	Quickstart

	Additional Details

	Deploying GovReady-Q in Production environments
	Set basic configuration variables
	Remember to Define Your host

	Setting up the Database Server

	Setting up a Webserver

	Creating the First User

	Other Configuration Settings

	Updating Deployment

	Deploying GovReady-Q for Development
	Quickstart

	Creating local/environment.json file

	Invitations on local systems

	Updating the source code

	Setting up a Database for Production Workloads
	Setting Up Postgres
	On the database server

	On the webapp server

	Configuring a Reverse Proxy Webserver for Production Use
	Setting Up Apache & uWSGI
	Setting up an HTTPS Certificate

	Setting up Nginx

	Multi-Container GovReady-Q and NGINX via Docker Compose
	Overview

	Set Up A Docker Host
	Workstation

	Docker Machine

	Get This Kit

	SSL/TLS Certificates for HTTPS

	Build Images

	Run GovReady-Q + NGINX Multi-container App

	Specify Parameters

	Check Logs From A Container

	GovReady-Q Is Up

	Execute A Script In A Container

	Stop And Remove Containers

	Environment Settings
	Available Configuration Settings

	Production Deployment Environment Settings

	Enterprise Single-Sign On Environment Settings

	Custom Branding Environment Settings

	Enterprise Single-Sign On / Login
	Proxy Authentication Server

	Applying Custom Organization Branding
	Creating the branding directory

	Activate the branding package

	Overriding templates

	Adding custom CSS

	Keeping your templates up to date

	Creating a custom Docker image
	Creating your own Dockerfile that uses a released GovReady-Q image as its parent image

	Building your docker image

 System Requirements

System Requirements

GovReady-Q is a Python 3.6 and higher, Django 2.x application with a relational database back-end.

Software Requirements

	Required Software Packages (partial list)

	(GovReady-Q application)

	Python 3.6

	Django 2.2

	Jinja 2.x

	uwsgi 2.x

	unzip

	graphviz

	pandoc

	Wkhtmltopdf

	Git 2.x

	supervisor

	Supported Databases

	Postgres 9.4 (psycopg2 2.7.5 adapter)

	Mysql 7.6 and higher (mysqlclient 1.3.12 adapter)

	SQLite 3.x

	Recommended Database

	Postgres 9.4 (psycopg2 2.7.5 adapter)

	SMTP Mail Server (for sending email notifications and receiving comments via email)

	Any SMTP mail server (MTA) supporting STARTTLS connections.

For a more detailed list of software dependencies and requirements see:

	https://github.com/GovReady/govready-q/blob/master/requirements.in

	https://github.com/GovReady/govready-q/blob/master/requirements.txt

	https://github.com/GovReady/govready-q/blob/master/requirements_mysql.in

	https://github.com/GovReady/govready-q/blob/master/requirements_mysql.txt

	https://github.com/GovReady/govready-q/blob/master/Vagrantfile

Hardware Requirements

	Minimum Hardware

	Single server to host both multi-tenant GovReady-Q application and Database

	Linux-compatible hardware

	2GB RAM

	10 GB storage (for database)

	Recommended Hardware

	2 servers: 1 for multi-tenant GovReady-Q application; 1 for Database Server

	Linux-compatible hardware (64 bit architecture; FIPS-140-2 validated cryptographic module)

	8GB RAM for each server

	100 GB storage (for database server)

 Installing GovReady-Q

Installing GovReady-Q

Click one of the tab belows to see quickstart for indicated platform.

Docker

Installing with Docker

Make sure you first install Docker (https://docs.docker.com/engine/installation/) and, if appropriate, grant non-root users access to run Docker containers (https://docs.docker.com/engine/installation/linux/linux-postinstall/#manage-docker-as-a-non-root-user) (or else use sudo when invoking Docker below).

Start

Run the docker container in detached mode
docker container run --name govready-q --detach -p 8000:8000 govready/govready-q

Create admin account and organization data
docker container exec -it govready-q first_run

Stop, start container (when needed)
docker container stop govready-q
docker container start govready-q

View logs - useful if site does not appear
docker container logs govready-q

To destroy the container and all user data entered into Q
docker container rm -f govready-q

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

macOS

Installing on macOS

GovReady-Q calls requires Python 3.6 or higher to run and several Unix packages to provide full functionality. Install the Homebrew package manager (https://brew.sh) to easily install Unix packages on macOS. Homebrew will install all packages in your userspace and not change native macOS Python or other libraries.

install Homebrew package manager
/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

Now install Python3 and the required Unix packages.

install dependencies using brew
brew install python3

install other packages:
brew install unzip graphviz pandoc selenium-server-standalone
brew cask install wkhtmltopdf

Installing GovReady-Q

Clone GovReady-Q source code and install.

clone GovReady-Q
git clone https://github.com/govready/govready-q
cd govready-q

install Python 3 packages
pip3 install --user -r requirements.txt

install Bootstrap and other vendor resources locally
./fetch-vendor-resources.sh

Run the final setup commands to initialize a local Sqlite3 database in local/db.sqlite to make sure everything is OK so far:

run database migrations (sqlite lite database used by default)
python3 manage.py migrate

load a few critical modules
python3 manage.py load_modules

create superuser with initial account
python3 manage.py first_run

Start GovReady-Q

run the server
python3 manage.py runserver

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

RHEL/CentOS 7

Installing on RHEL/CentOS 7

Instructions applicable RHEL 7, CentOS 7 and Amazon Linux 2.

GovReady-Q calls requires Python 3.6 or higher to run and several Linux packages to provide full functionality.

if necessary, enable EPEL and IUS repositories
rpm -i https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm https://rhel7.iuscommunity.org/ius-release.rpm

install dependencies
sudo yum install \
unzip python36-pip python36-devel \
graphviz \
pandoc xorg-x11-server-Xvfb wkhtmltopdf \

optional install gcc to build the uWSGI Python package.
sudo yum install gcc

optional insall of postgress and/or mysql
sudo yum install postgresql mysql-devel

GovReady-Q calls out to git to fetch apps from git repositories, but that requires git version 2 or later because of the use of the GIT_SSH_COMMAND environment variable. RHEL stock git is version 1. Switch it to version 2+ by using the IUS package:

if necessary, remove any git currently installed
yum remove git
install git2u
yum install git2u

Installing GovReady-Q

Clone GovReady-Q source code and install.

clone GovReady-Q
git clone https://github.com/govready/govready-q
cd govready-q

install Python 3 packages
pip3 install --user -r requirements.txt

install Bootstrap and other vendor resources locally
./fetch-vendor-resources.sh

Run the final setup commands to initialize a local Sqlite3 database in local/db.sqlite to make sure everything is OK so far:

run database migrations (sqlite lite database used by default)
python3 manage.py migrate

load a few critical modules
python3 manage.py load_modules

create superuser with initial account
python3 manage.py first_run

Start GovReady-Q

run the server
python3 manage.py runserver

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

Ubuntu 16.04

Installing on Ubuntu

Instructions provide basic guidance on setting up GovReady-Q on an Ubuntu 16.04 server with Nginx. These commands should be run from the root directory of the GovReady-Q code repository.

GovReady-Q calls requires Python 3.6 or higher to run and several Linux packages to provide full functionality.

upgrade apt-get
apt-get update && apt-get upgrade -y

install dependencies
apt-get install -y \
 unzip \
 python3 python-virtualenvpython3-pip \
 python3-yaml \
 nginx uwsgi-plugin-python3supervisor \
 memcached \
 graphviz

optional install gcc to build the uWSGI Python package.
sudo yum install gcc

optional insall of postgress and/or mysql
apt-get install -y postgresql mysql-devel

Installing GovReady-Q

Clone GovReady-Q source code and install.

clone GovReady-Q
git clone https://github.com/govready/govready-q
cd govready-q

install Python 3 packages
pip3 install --user -r requirements.txt

install Bootstrap and other vendor resources locally
./fetch-vendor-resources.sh

Run the final setup commands to initialize a local Sqlite3 database in local/db.sqlite to make sure everything is OK so far:

run database migrations (sqlite lite database used by default)
python3 manage.py migrate

load a few critical modules
python3 manage.py load_modules

create superuser with initial account
python3 manage.py first_run

Start GovReady-Q

run the server
python3 manage.py runserver

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

Windows

Installing on Windows (with Docker)

GovReady-Q can only be installed on Windows using Docker.

Make sure you first install Docker (https://docs.docker.com/docker-for-windows/install/).

Start

Run the docker container in detached mode
docker container run --name govready-q --detach -p 8000:8000 govready/govready-q

Create admin account and organization data
docker container exec -it govready-q first_run

Stop, start container
docker container stop govready-q
docker container start govready-q

View logs - useful if site does not appear
docker container logs govready-q

To destroy the container and all user data entered into Q
docker container rm -f govready-q

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

Additional deployment details and configuration options are documented for each platform.

	Deploying with Docker
	Quickstart

	Additional Details
	Notes and Common Issues

	Advanced configuration of GovReady-Q inside Docker
	Changing the hostname and port
	The public address (as users see it)

	The address that the container is bound to

	Persistent database
	Sqlite file

	Remote database

	Configuring email

	Container management and other options

	Adding and developing compliance apps

	Logs for Debugging

	Production deployment of the Docker container

	Secure deployments

	Other management commands

	Updating to a new release of GovReady-Q

	Environment variables for launching the container without our run script

	Running tests

	Populating sample data for manual testing and verification

	Deploying on macOS
	Quickstart

	Additional Details

	Deploying on RHEL 7 / CentOS 7 / Amazon Linux 2
	Quickstart

	Additional Details
	Deployment utilities

	Creating a UNIX user named govready-q

	Upgrading pip

	Installing as UNIX user named govready-q

	Installing drivers for Postgres, MySQL

	Deploying on Ubuntu
	Quickstart

	Additional Details
	Deployment utilities

	Creating a UNIX user named govready-q

	Installing drivers for Postgres, MySQL

	local/environment.json

	Deploying on Windows (with Docker)
	Quickstart

	Additional Details

 Deploying with Docker

Deploying with Docker

	Container

	Where

	Current Release on Docker

	https://hub.docker.com/r/govready/govready-q/

	Release 0.9.0.dev on Docker

	https://hub.docker.com/r/govready/govready-0.9.0.dev/ [https://hub.docker.com/r/govready/govready-q-0.9.0.dev/]

	Nightly Build on Docker

	https://hub.docker.com/r/govready/govready-q-nightly/

Quickstart

Docker

Installing with Docker

Make sure you first install Docker (https://docs.docker.com/engine/installation/) and, if appropriate, grant non-root users access to run Docker containers (https://docs.docker.com/engine/installation/linux/linux-postinstall/#manage-docker-as-a-non-root-user) (or else use sudo when invoking Docker below).

Start

Run the docker container in detached mode
docker container run --name govready-q --detach -p 8000:8000 govready/govready-q

Create admin account and organization data
docker container exec -it govready-q first_run

Stop, start container (when needed)
docker container stop govready-q
docker container start govready-q

View logs - useful if site does not appear
docker container logs govready-q

To destroy the container and all user data entered into Q
docker container rm -f govready-q

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

Additional Details

Notes and Common Issues

Your GovReady-Q site will not load immediately, as GovReady-Q initializes your database for the first time. Wait for the site to become available.

Because of HTTP Host header checking, you must use localhost to access the site, or another hostname if configured using the --address option documented below.

If the site does not come up, check the container logs for an error message:

docker container logs govready-q

The GovReady-Q default SQLite database created within a Docker container exists only for the duration of the container’s lifetime. The database will persist between docker container stop/docker container start commands, but when the container is removed from Docker (i.e. using docker container rm) the database will be destroyed. See the Persistent database section below for connecting to a database outside of the container for production data.

The default Govready-Q instance cannot send email or receive comment replies until it is configured to use a transactional mail provider like Mailgun – see below.

The default Govready-Q instance is configured to non-debug mode (Django DEBUG=false), which is the recommended setting for a public website. The instance can be set to debug mode at runtime – see below.

Advanced configuration of GovReady-Q inside Docker

For more complex setups, using our run script instead will be easier:

wget https://raw.githubusercontent.com/GovReady/govready-q/master/deployment/docker/docker_container_run.sh
chmod +x docker_container_run.sh
./docker_container_run.sh

Advanced container options can be set with command-line arguments to our container run script:

./docker_container_run.sh ...GovReady-Q arguments... -- ...Docker arguments...

Changing the hostname and port

The public address (as users see it)

The container will run at localhost:8000 by default, it will only be accessible from the
host machine, and because of HTTP Host header checking you must visit GovReady-Q using the
same hostname it is configured to run at (so, with default settings, visiting 127.0.0.1
instead of localhost will result in an error).

You may change the hostname and port of the GovReady-Q server using:

./docker_container_run.sh --address q.mydomain.com:80

If the Docker container is behind a proxy, then --address specifies the public address
that end-users will use to access GovReady-Q. This may differ from the address and port that the container is accessed at on your organization’s network, which is set using --bind.

Add --https if end users will access GovReady-Q with https: URLs. This must be done through a proxy that accepts HTTPS connections and passes the requests using HTTP to the Docker container. See the HTTPS environment variable, below.

The address that the container is bound to

Use --bind IP:PORT to control how the listening socket is created on the host machine.
The default value of --bind is 127.0.0.1 and the port from --address, or 127.0.0.1:8000 if
--address isn’t given. If the host machine is behind a proxy, use --bind to control the
network interface and port that Docker will forward to the GovReady-Q container.

./docker_container_run.sh --bind 10.0.0.5:6543

Persistent database

In a production environment it is important to have GovReady-Q connect to a
persistent database instead of the database stored inside the container,
which will be destroyed when the container is destroyed. There are two methods
for connecting to a persistent database.

Sqlite file

You can use a Sqlite file stored on the host machine:

./docker_container_run.sh --sqlitedb /path/to/govready-q-database.sqlite

You must specify an absolute path. The path is mounted using a Docker bind mount into the container filesystem.

The file must be readable and writable by the container process, which is running as user 1000/group 1000. Although the container is running as a user isolated from the host environment, filesystem permissions for mounted files are based on comparing the raw user/group IDs of the file’s owner/group on the host to the raw user/group ID of the process running in the container. Consider granting user 1000 read/write permission to the database using ACLs:

setfacl -m u:1000:rw /path/to/govready-q-database.sqlite

Of course, do not do this if the host machine has a user 1000 that you do not trust.

Remote database

You can also connect to a database running on a remote system accessible to
the Docker container.

For instance, you might run a second Docker container holding a Postgres
server.

DBPASSWORD=mysecretpassword
docker container run --name govready-q-db -e POSTGRES_PASSWORD=$DBPASSWORD -d postgres
DBHOST=$(docker container inspect govready-q-db | jq -r .[0].NetworkSettings.IPAddress)
DBUSER=postgres
DBDATABASE=postgres

(This example uses jq, a JSON parsing tool, to extract the IP address of the database container. You can install jq or just set DBHOST manually by looking for the IP address in docker container inspect govready-q-db.)

Start the GovReady-Q container with the argument:

./docker_container_run.sh --dburl postgres://$DBUSER:$DBPASSWORD@$DBHOST/$DBDATABASE

where $DBHOST is the hostname of the database server, $DBDATABASE is the name of the database, and $DBUSER and $DBPASSWORD are the credentials for the database.

You can also use a MySQL or MariaDB server using the syntax mysql://USER:PASSWORD@HOST:PORT/NAME.

Configuring email

GovReady-Q sends outbound emails for notifications about invitations and discussions.
It also receives inbound emails — replies to discussion notifications can be used to
post discussion comments by email.

To configure outbound email, use:

./docker_container_run.sh --email-host smtp.company.org --email-port 587 --email-user ... --email-pw ... --email-domain q.company.org

--email-domain sets the hostname used in the email address of outbound email. The other arguments set the SMTP relay server details.

Some of GovReady-Q’s outbound emails can be replied to. When a user replies to a notification of a discussion comment, the reply’s body is post as a new comment on the discussion. Currently we only support an incoming notification hook from Mailgun, and it is not yet configurable for the docker deployment. TODO

Container management and other options

Other options that can be passed on the command-line are:

Use --name NAME to specify an alternate name for the container. The default is govready-q.

Use --relaunch to remove an existing container of the same name before launching
the new one, if an existing container of the same name exists. This simply runs
docker container rm -f NAME.

Add --debug to start GovReady-Q in DEBUG mode, which enables nicer error messages. Do not use in production.

You can additionally pass parameters to the docker container run command by separating the Docker parameters [https://docs.docker.com/engine/reference/run/] from the GovReady-Q parameters with --, such as:

./docker_container_run.sh --address q.mydomain.com:80 -- -e VAR=VALUE

Adding and developing compliance apps

If you are using the Docker image to develop your own compliance apps, then
you will need to bind-mount a directory on your (host) system as a directory
within the container so that the container can see your app YAML files. To
do so, start the container with the additional command-line argument:

--appsdevdir /path/to/apps

The directory may be empty but it must exist, and you must specify it as an
absolute path (due to a Docker limitation).

The directory and its contents must also be readable — and writable, if you
intend to use GovReady-Q’s authoring tools — by the container process. The
container process is running as user 1000/group 1000. Although the container
is running as a user isolated from the host environment, filesystem permissions
for mounted files are based on comparing the raw user/group IDs of the file’s
owner/group on the host to the raw user/group ID of the process running in the
container. Consider granting user 1000 read/write permission to the files,
plus execute (i.e. browse) permission to the directories, in the mounted path
using ACLs:

setfacl -R -m u:1000:rwX /path/to/apps

Of course, do not do this if the host machine has a user 1000 that you do not trust.

If the directory is not empty, it should have subdirectories for each of your apps.
For instance, you would have a YAML file at /path/to/apps/my_app/app.yaml.

To create your first app, you can run

docker container exec -it govready-q python3.6 manage.py compliance_app host your_new_app_name

Replace your_new_app_name with an app identifier, which may contain letters,
numbers, dashes, and underscores. host is always just host — don’t change
that.

If your new app does not appear in the compliance apps catalog, you may need
to force the app catalog cache to be cleared by restarting the container:

docker container restart govready-q

Logs for Debugging

The container’s console shows the output of container’s start-up commands including database migrations and process startup. The container’s console log can be accessed with

docker container logs govready-q

GovReady-Q application logs can be found in /var/log within the container to track status and assist with debugging. These files contain access logs and other program output.

	/var/log/application-stderr.log - GovReady-Q application standard error

	/var/log/application-stdout.log - GovReady-Q application standard out

	/var/log/notificationemails-stderr.log - GovReady-Q email notifications standard error

	/var/log/notificationemails-stdout.log - GovReady-Q email notifications standard error

	/var/log/supervisord.log - Supervisor daemon

Debugging “Internal Server Error” Messages

A special management command can be used to see the application log files to debug unhandled “Internal Server Error” (HTTP code 500) messages displayed in the browser to end users

docker container exec govready-q tail_logs
Replace "govready-q" with name of your container or use container id

tail_logs takes the same arguments as Unix tail. For instance, add -n 1000 to see the most recent 1,000 log lines, or add -f to continue to output the logs as the log files grow.

most recent 200 lines of logs
docker container exec govready-q tail_logs -n 200

real-time display of logs
docker container exec govready-q tail_logs -f

The log files can also be accessed by mounting /var/log with a Docker bind-mount or as a volume (and that’s the only way to see the logs if docker container exec cannot be used in your environment).

Production deployment of the Docker container

The GovReady-Q container runs several processes, including an HTTP/application server and a background process for sending notification emails.

Secure deployments

The container’s processes run exclusively as a non-root user with UID 1000 and GID 1000.

The container may be run with a read-only root filesystem (Docker’s --read-only argument) so long as /run, /tmp, and /var/log are writable. When the --dburl argument is given to our docker_container_run.sh script, a read-only filesystem is activated using:

--read-only --tmpfs /run --tmpfs /tmp --tmpfs /var/log

The three directories can be made writable either by being mounted as tmpfs temporary filesystems, as above, or using a bind mount or a Docker volume. In production environments where the container is launched without our script, it is recommended to use tempfs for /run and /tmp and to mount /var/log to a volume.

Other management commands

See the uWSGI [http://uwsgi-docs.readthedocs.io/] application server JSON process stats:

docker container exec govready-q uwsgi_stats

Updating to a new release of GovReady-Q

Periodically there will be a new release of GovReady-Q as an new image on the Docker Hub. Updating is easy by re-running the same commands again.

	There may be an update to docker_container_run.sh. Since this script is not a part of the Docker image, you will need to get it again from this GitHub repository.

	You should be using a persistent database as described above. When using a persistent database, it is safe to destroy the govready-q Docker container and start a new one to deploy an update.

	Use the same arguments to docker_container_run.sh as when you started the container the last time, but add --relaunch to kill the previous container — you cannot have two containers with the same name or two containers listening on the same port. (You can change the name and port, as described above, if you would like to keep the old container running.)

	When the new container starts, database migrations will be applied, if applicable.

For example:

Update docker_container_run.sh, replacing the old script (with -O).
wget -O docker_container_run.sh \
 https://raw.githubusercontent.com/GovReady/govready-q/master/deployment/docker/docker_container_run.sh
chmod +x docker_container_run.sh

Remove old container and launch updated container.
./docker_container_run.sh --relaunch [your same command-line arguments]

Environment variables for launching the container without our run script

The following environment variables are used to configure the container when launching GovReady-Q using docker run or a container service (i.e., not when using our docker_container_run.sh helper script).

HOST - The domain name that GovReady-Q will be accessible at by end users. (Default: localhost)

PORT - The port that GovReady-Q will be accessed at by end users, typically either 80 (no HTTPS) or 443 (HTTPS). (Default: 8080)

HTTPS - Set to true if GovReady-Q will be accessed by end users at an https: address. This must be done through a proxy that accepts HTTPS connections and passes the requests using HTTP to the Docker container. The proxy must set the X-Forwarded-Proto: https header. It is also permissible for the proxy to forward HTTP requests, and those requests will be automatically redirected to the https: URL. (Default: false)

DEBUG - Set to true to run in Django debug mode. (Default: false)

DBURL - Set to a database connection string as described in https://github.com/kennethreitz/dj-database-url. We recommend using PostgreSQL using a TLS server certificate [https://www.postgresql.org/docs/9.1/static/libpq-ssl.html], e.g. postgresql://user:password@dbhost/govready_q?sslmode=verify-full&sslrootcert=/path/to/pgsql.crt (although you’ll have to figure out how to get the server certificate accessible via the container filesystem). (Default: Not set, which means using a Sqlite database stored in the container at /usr/src/app/local/database.sqlite, which will be ephemeral if the path is not mounted to the host or a Docker volume.)

EMAIL_HOST, EMAIL_PORT, EMAIL_USER, EMAIL_PW, and EMAIL_DOMAIN - For enabling outbound email. The host, port, username, and password settings specify a TLS-enabled SMTP server. EMAIL_DOMAIN is the domain name to use in outbound mail. (Default: Not set and outbound emails are dumped to logs for debugging.) To test the email configuration from the command-line, you can run docker container exec -it govready-q python3.6 manage.py sendtestemail you@example.com. If email is configured, you should not see any output and you should get a test email.

FIRST_RUN - If set to 1, an administrator user will be created when the container launches and a randomly generated password will be given to the user and printed on the console, which will be visible in the container’s logs. An organization named main will also be created.

PROCESSES - The number of concurrent requests that can be handled by the container. (Default: 4)

SECRET_KEY - The Django SECRET_KEY [https://docs.djangoproject.com/en/2.0/ref/settings/#secret-key] for session management. (Try this tool [https://www.miniwebtool.com/django-secret-key-generator/] to generate one.)

ADMINS - The Django ADMINS [https://docs.djangoproject.com/en/2.0/ref/settings/#admins] setting, passed as raw JSON. Example: [["Admin Name 1", "admin1@example.com"], ["Admin Name 2", "admin2@example.com"]]. (Default: Empty list, i.e. [].)

SYSLOG - The host and port of a syslog-compatible log message sink. (Default: None.)

MAILGUN_API_KEY - An API key for Mailgun which is used to validate incoming webhook requests from Mailgun when an incoming email is received, when Mailgun is configured to handle incoming mail. (Default: None)

BRANDING (downstream packaging only): You may override the templates and stylesheets that are used for GovReady-Q’s branding by setting this environment variable to the name of an installed Django app Python module (i.e. created using manage.py startapp) that holds templates and static files. No such app is provided in the GovReady-Q published Docker image, so this variable can only be used by downstream image maintainers. See Applying Custom Organization Branding.

PROXY_AUTHENTICATION_USER_HEADER and PROXY_AUTHENTICATION_EMAIL_HEADER: GovReady-Q can be deployed behind a reverse proxy that authenticates users and passes the authenticated user’s username and email address in HTTP headers. These environment variables correspond to the settings documented in Enterprise Login.

Running tests

GovReady-Q’s unit tests can be run within the Docker container. After building the image:

docker container run --rm -it govready/govready-q:latest python3.6 manage.py test

Or once a Docker container running GovReady-Q is started (and named govready-q), use exec to begin a shell within the container, and then launch the unit tests:

docker container exec -it govready-q bash
python3.6 manage.py test guidedmodules

The functional tests run a headless Chromium web browser session. We welcome assistance figuring out how to get this to work in our Docker container. Chromium’s process isolation capabilities seem to require special system privileges (i.e. docker run --privileged --cap-add SYS_ADMIN) or Chromium command-line flags (--no-sandbox --disable-gpu).

yum install -y chromium chromedriver
python3.6 manage.py test
...
selenium.common.exceptions.WebDriverException: Message: unknown error: Chrome failed to start: exited abnormally

Populating sample data for manual testing and verification

If you wish to add sample data for testing purposes to your GovReady-Q image, run the following command (after first_run has completed):

docker container exec -it govready-q add_data --non-interactive

This will run a quickstart command to generate data in your GovReady-Q instance, as described in more detail in the Testing section of this documentation.

 Deploying on macOS

Deploying on macOS

Quickstart

macOS

Installing on macOS

GovReady-Q calls requires Python 3.6 or higher to run and several Unix packages to provide full functionality. Install the Homebrew package manager (https://brew.sh) to easily install Unix packages on macOS. Homebrew will install all packages in your userspace and not change native macOS Python or other libraries.

install Homebrew package manager
/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

Now install Python3 and the required Unix packages.

install dependencies using brew
brew install python3

install other packages:
brew install unzip graphviz pandoc selenium-server-standalone magic libmagic
brew cask install wkhtmltopdf

Installing GovReady-Q

Clone GovReady-Q source code and install.

clone GovReady-Q
git clone https://github.com/govready/govready-q
cd govready-q

install Python 3 packages
pip3 install --user -r requirements.txt

install Bootstrap and other vendor resources locally
./fetch-vendor-resources.sh

Run the final setup commands to initialize a local Sqlite3 database in local/db.sqlite to make sure everything is OK so far:

run database migrations (sqlite lite database used by default)
python3 manage.py migrate

load a few critical modules
python3 manage.py load_modules

create superuser with initial account
python3 manage.py first_run

Start GovReady-Q

run the server
python3 manage.py runserver

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

Additional Details

We welcome assistance with installing GovReady-Q natively on MacOS.

 Deploying on RHEL 7 / CentOS 7 / Amazon Linux 2

Deploying on RHEL 7 / CentOS 7 / Amazon Linux 2

Quickstart

RHEL/CentOS 7

Installing on RHEL/CentOS 7

Instructions applicable RHEL 7, CentOS 7 and Amazon Linux 2.

GovReady-Q calls requires Python 3.6 or higher to run and several Linux packages to provide full functionality.

if necessary, enable EPEL and IUS repositories
rpm -i https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm https://rhel7.iuscommunity.org/ius-release.rpm

install dependencies
sudo yum install \
unzip python36-pip python36-devel \
graphviz \
pandoc xorg-x11-server-Xvfb wkhtmltopdf \

optional install gcc to build the uWSGI Python package.
sudo yum install gcc

optional insall of postgress and/or mysql
sudo yum install postgresql mysql-devel

GovReady-Q calls out to git to fetch apps from git repositories, but that requires git version 2 or later because of the use of the GIT_SSH_COMMAND environment variable. RHEL stock git is version 1. Switch it to version 2+ by using the IUS package:

if necessary, remove any git currently installed
yum remove git
install git2u
yum install git2u

Installing GovReady-Q

Clone GovReady-Q source code and install.

clone GovReady-Q
git clone https://github.com/govready/govready-q
cd govready-q

install Python 3 packages
pip3 install --user -r requirements.txt

install Bootstrap and other vendor resources locally
./fetch-vendor-resources.sh

Run the final setup commands to initialize a local Sqlite3 database in local/db.sqlite to make sure everything is OK so far:

run database migrations (sqlite lite database used by default)
python3 manage.py migrate

load a few critical modules
python3 manage.py load_modules

create superuser with initial account
python3 manage.py first_run

Start GovReady-Q

run the server
python3 manage.py runserver

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

Additional Details

Deployment utilities

Sample apache.conf, superviser.ini, and update.sh files can be found in the source code directory deployment/rhel.

Creating a UNIX user named govready-q

You may find it useful to create a user specifically for GovReady-Q. Do this before installing GovReady-Q.

Create user.
useradd govready-q -c "govready-q"

Change permissions so that Apache can read static files.
chmod a+rx /home/govready-q

Upgrading pip

Upgrade pip because the RHEL package version is out of date (we need >=9.1 to properly process hashes in requirements.txt)

pip3 install --upgrade pip

Installing as UNIX user named govready-q

Switch to the govready-q user and install Q:

sudo su govready-q
cd
git clone https://github.com/govready/govready-q
cd govready-q
git checkout {choose the tag for the current released version}
pip3 install --user -r requirements.txt
./fetch-vendor-resources.sh

Installing drivers for Postgres, MySQL

if you intend to use optional configurations, such as the MySQL adapter, you
may need to run additional `pip3 install` commands, such as:
pip3 install --user -r requirements_mysql.txt

 Deploying on Ubuntu

Deploying on Ubuntu

Quickstart

Ubuntu 16.04

Installing on Ubuntu

Instructions provide basic guidance on setting up GovReady-Q on an Ubuntu 16.04 server with Nginx. These commands should be run from the root directory of the GovReady-Q code repository.

GovReady-Q calls requires Python 3.6 or higher to run and several Linux packages to provide full functionality.

upgrade apt-get
apt-get update && apt-get upgrade -y

install dependencies
apt-get install -y \
 unzip \
 python3 python-virtualenvpython3-pip \
 python3-yaml \
 nginx uwsgi-plugin-python3supervisor \
 memcached \
 graphviz

optional install gcc to build the uWSGI Python package.
sudo yum install gcc

optional insall of postgress and/or mysql
apt-get install -y postgresql mysql-devel

Installing GovReady-Q

Clone GovReady-Q source code and install.

clone GovReady-Q
git clone https://github.com/govready/govready-q
cd govready-q

install Python 3 packages
pip3 install --user -r requirements.txt

install Bootstrap and other vendor resources locally
./fetch-vendor-resources.sh

Run the final setup commands to initialize a local Sqlite3 database in local/db.sqlite to make sure everything is OK so far:

run database migrations (sqlite lite database used by default)
python3 manage.py migrate

load a few critical modules
python3 manage.py load_modules

create superuser with initial account
python3 manage.py first_run

Start GovReady-Q

run the server
python3 manage.py runserver

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

Additional Details

Deployment utilities

Sample apache.conf, superviser.ini, and update.sh files can be found in the source code directory deployment/ubuntu.

Creating a UNIX user named govready-q

You may find it useful to create a user specifically for GovReady-Q. Do this before installing GovReady-Q.

create user
useradd govready-q -c "govready-q"

change permissions so that Apache can read static files.
chmod a+rx /home/govready-q

change to govready-q user
sudo su govready-q

Installing drivers for Postgres, MySQL

if you intend to use optional configurations, such as the MySQL adapter, you
may need to run additional `pip3 install` commands, such as:
pip3 install --user -r requirements_mysql.txt

local/environment.json

Configure GovReady-Q by creating a file in local/environment.json with the following content:

{
 "debug": false,
 "admins": [["Name", "email@domain.com"], ...],
 "host": "q.<yourdomain>.com",
 "https": true,
 "secret-key": "something random here",
 "static": "/home/user/public_html"
}

You can use Django Secret Key Generator [https://www.miniwebtool.com/django-secret-key-generator/] to make a secret-key value.

Prepare static files:

mkdir -p /home/user/public_html/static
python3 manage.py collectstatic --noinput

Set up supervisor to run the uwsgi daemon:

ln -sf `pwd`/deployment/ubuntu/supervisor.conf /etc/supervisor/conf.d/q.govready.com.conf
service supervisor restart

 Deploying on Windows (with Docker)

Deploying on Windows (with Docker)

Quickstart

Windows

Installing on Windows (with Docker)

GovReady-Q can only be installed on Windows using Docker.

Make sure you first install Docker (https://docs.docker.com/docker-for-windows/install/).

Start

Run the docker container in detached mode
docker container run --name govready-q --detach -p 8000:8000 govready/govready-q

Create admin account and organization data
docker container exec -it govready-q first_run

Stop, start container
docker container stop govready-q
docker container start govready-q

View logs - useful if site does not appear
docker container logs govready-q

To destroy the container and all user data entered into Q
docker container rm -f govready-q

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

Additional Details

We welcome assistance with installing GovReady-Q natively on Windows.

 Deploying GovReady-Q in Production environments

Deploying GovReady-Q in Production environments

These instructions assume that GovReady-Q is installed by the user govready-q, in the directory /home/govready-q/govready-q/.

To verify that this is the case, run the following command, and check whether GovReady-Q responds to HTTP requests (on localhost:8000 by default).

cd /home/govready-q/govready-q/ && python3 manage.py runserver

If GovReady-Q is installed successfully, proceed with the rest of these configuration instructions. If it doesn’t, see OS-specific install instructions.

Set basic configuration variables

Create a file named local/environment.json (ensure it is not world-readable) that contains site configuration in JSON, with some recommended settings:

{
 "debug": false,
 "host": "webserver.hostname.com",
 "https": true,
 "secret-key": "generate random string using e.g. https://www.miniwebtool.com/django-secret-key-generator/",
 "static": "/home/govready-q/public_html/static"
}

Because of host header checking, to test the site again using python3 manage.py runserver you will need to visit it using webserver.hostname.com and not localhost. (Be sure to replace webserver.hostname.com with your hostname.)

Remember to Define Your host

The DisallowedHost…Invalid HTTP_HOST header…You may need to add ‘:raw-html-m2r:`<your domain name>`’ to ALLOWED_HOSTS is a common error received when first trying to get GovReady-Q running on a server at a specific domain. The error indicates the domain you are trying to visit is not white listed in Django’s special ALLOWED_HOST variable.

For security, Django requires white listing your server’s domain(s) in the ALLOWED_HOST variable. Ordinarily this is hardcoded into the settings.py file. GovReady-Q allows the ALLOWED_HOST to be set by the host environment settings so the values can be passed at runtime.

	host must be defined, or GovReady-Q will default value to localhost

Setting up the Database Server

For production deployment, it is recommended to use dedicated database software, rather than SQLite.

The recommended database is PostgreSQL - see instructions on setting up Q with PostgreSQL

Setting up a Webserver

It’s recommended to run a dedicated webserver software, such as Apache or Nginx, as a reverse proxy in front of the Q application (running through uWSGI). To read how to do this, see instructions on setting up Q with a reverse proxy webserver.

Creating the First User

Create the initial user and a “main” organization using:

python3 manage.py first_run

You should now be able to log into GovReady-Q using the user created in this section.

You can also use the Django admin to create organizations.

Other Configuration Settings

Set up email by adding to local/environment.json:

"admins": [["Your Name", "you@company.com"]],
"email": {
 "host": "smtp.server.com", "port": "587", "user": "...", "pw": "....",
 "domain": "webserver.hostname.com"
},
"mailgun_api_key": "...",

Updating Deployment

When there are changes to the GovReady-Q software, pull new sources and restart processes with:

replace $DISTRO with an appropriate value.
Currently-supported options include "rhel" and "ubuntu"
sudo -iu govready-q /home/govready-q/govready-q/deployment/$DISTRO/update.sh

As root, you can also restart just the Python/Django process:

sudo supervisorctl restart all

But this won’t do a full update so don’t normally do that (it won’t restart the separate notifications process or generate static assets, etc.).

 Deploying GovReady-Q for Development

Deploying GovReady-Q for Development

This page provides additional tips for installing and run GovReady-Q in a mode suitable for making and testing changes to the software (i.e., in a Dev environment).

Quickstart

For local development, there is a quickstart script available to speed up environment setup. After installing system requirements through your package manager, run the following four commands in order to set up GovReady-Q in a new directory:

git clone https://github.com/govready/govready-q
cd govready-q
virtualenv -p python3 env
./quickstart.sh

This will set up a local/environment.json file suitable for a dev environment; set up local dependencies; and run the assorted initial manage.py commands (migrate, load_modules, first_run, etc.). Additionally, it can run common post-installation steps, based on user input.

The quickstart.sh script is set up to take user input, and is expected to be run interactively.

Creating local/environment.json file

When you first run GovReady-Q with python manage.py runserver, you’ll be prompted to copy some JSON data into a file at local/environment.json like this:

{
 "debug": true,
 "host": "localhost:8000",
 "https": false,
 "secret-key": "...something here..."
}

This file is important for persisting login sessions, and you can provide other Q settings in this file.

Invitations on local systems

You will probably want to try the invite feature at some point. The debug server is configured to dump all outbound emails to the console. So if you “invite” others to join you within the application, you’ll need to go to the console to get the invitation acceptance link.

Updating the source code

To update the source code from this repository you can git pull. You then may need to re-run some of the setup commands:

if you set up virtualenv
git pull
source env/bin/activate
pip3 install -r requirements.txt
./fetch-vendor-resources.sh
python3 manage.py migrate
python3 manage.py load_modules

if you did NOT set up virtualenv
git pull
pip3 install --user -r requirements.txt
./fetch-vendor-resources.sh
python3 manage.py migrate
python3 manage.py load_modules

 Setting up a Database for Production Workloads

Setting up a Database for Production Workloads

The preferred production database for Q is PostgreSQL, but MySQL/MariaDB is also supported.

SQLite is supported in development environments, but not recommended for production use.

Setting Up Postgres

These instructions assume a separate database server and webapp server.

On the database server

On the database server, install Postgres. If using RHEL, CentOS, or similar:

yum install postgresql-server postgresql-contrib
postgresql-setup initdb

In /var/lib/pgsql/data/postgresql.conf, enable TLS connections by changing the ssl option to

ssl = on

and enable remote connections by binding to all interfaces:

listen_addresses = '*'

Enable remote connections to the database only from the webapp server and only encrypted with TLS by editing /var/lib/pgsql/data/pg_hba.conf and adding the line (replacing the hostname with the hostname of the Q webapp server):

hostssl all all webserver.hostname.com md5

Generate a self-signed certificate (replace db.govready-q.internal with the database server’s hostname if possible):

openssl req -new -newkey rsa:2048 -days 365 -nodes -x509 -keyout /var/lib/pgsql/data/server.key -out /var/lib/pgsql/data/server.crt -subj '/CN=db.govready-q.internal'
chmod 600 /var/lib/pgsql/data/server.{key,crt}
chown postgres.postgres /var/lib/pgsql/data/server.{key,crt}

Copy the certificate to the webapp server so that the webapp server can make trusted connections to the database server:

cat /var/lib/pgsql/data/server.crt
place on webapp server at /home/govready-q/pgsql.crt

Then restart the database:

service postgresql restart

Then set up the user and database (both named govready_q):

sudo -iu postgres createuser -P govready_q
paste a long random password

sudo -iu postgres createdb govready_q

Postgres’s default permissions automatically grant users access to a database of the same name.

And if necessary, open the Postgres port:

firewall-cmd --zone=public --add-port=5432/tcp --permanent
firewall-cmd --reload

On the webapp server

On the webapp server, now check that secure connections can be made:

psql "postgresql://govready_q@dbserver.hostname.com/govready_q?sslmode=verify-full&sslrootcert=/home/govready-q/pgsql.crt"

(It should fail if the TLS certificate file is not provided, if sslmode is set to disable, if a different user or database is given, or if the wrong password is given.)

Then in our GovReady-Q local/environment.json file, configure the database (replace THEPASSWORDHERE) by setting the following key:

"db": "postgresql://govready_q:THEPASSWORDHERE@dbserver.hostname.com/govready_q?sslmode=verify-full&sslrootcert=/home/govready-q/pgsql.crt",

Then initialize the database content:

python3 manage.py migrate
python3 manage.py load_modules

And generate static files:

python3 manage.py collectstatic

 Configuring a Reverse Proxy Webserver for Production Use

Configuring a Reverse Proxy Webserver for Production Use

Setting Up Apache & uWSGI

Install Apache 2.x with SSL (back to being root):

yum install httpd mod_ssl

Copy the Apache config into place:

cp /home/govready-q/govready-q/deployment/rhel/apache.conf /etc/httpd/conf.d/govready-q.conf

And then edit the file replacing q.govready.com and *.govready.com with your hostnames.

If you don’t have a TLS certificate ready to use, create a self-signed certificate (replacing webserver.hostname.com with your hostname):

openssl req -new -newkey rsa:2048 -days 365 -nodes -x509 -keyout /home/govready-q/ssl_certificate.key -out /home/govready-q/ssl_certificate.crt -subj '/CN=webserver.hostname.com'
chmod 600 /home/govready-q/ssl_certificate.{key,crt}
chown apache.apache /home/govready-q/ssl_certificate.{key,crt}

If SELinux is enabled (sestatus shows SELinux status: enabled), grant the Apache process access to these files as well as the site’s static files:

chcon -v -R --type=httpd_sys_content_t /home/govready-q/govready-q/deployment/rhel/apache.conf /home/govready-q/ssl_certificate.{key,crt} /home/govready-q/public_html

and grant Apache permission to make network connections so that it can connect to the Python/uwsgi backend running GovReady-Q:

setsebool httpd_can_network_connect true

Install supervisor which will keep the Python/Django process running and symlink our supervisor config into place:

yum install supervisor
ln -s /home/govready-q/govready-q/deployment/rhel/supervisor.ini /etc/supervisord.d/govready-q.ini

Restart services:

service supervisord restart
service httpd restart

And if necessary open the web ports:

firewall-cmd --zone=public --add-port=80/tcp --permanent
firewall-cmd --zone=public --add-port=443/tcp --permanent
firewall-cmd --reload

GovReady-Q should now be running and accessible at your domain name. Follow the instructions in the main README.md [https://github.com/GovReady/govready-q/blob/master/README.md] for creating your first organization.

Setting up an HTTPS Certificate

The instructions above created a self-signed certificate to get the website up and running. To use Let’s Encrypt to automatically provision a real certificate, install and run certbot:

yum install -y python-certbot-apache
certbot --apache -d webserver.hostname.com
and follow the prompts

Then set it to automatically renew certificates as needed:

edit root's crontab
crontab -e

insert at end:
30 2 * * * /usr/bin/certbot renew >> /var/log/le-renew.log

Setting up Nginx

Configure nginx to use nginx.conf in the govready-q directory:

Turn off nginx's default website.
rm -f /etc/nginx/sites-enabled/default

Put in our nginx site config.
ln -sf /home/govready-q/govready-q/deployment/ubuntu/nginx.conf /etc/nginx/sites-enabled/yourdomain.com

service nginx restart

The nginx conf file assumes a certificate chain and private key are present at /etc/ssl/local/ssl_certificate.crt/key.

 Multi-Container GovReady-Q and NGINX via Docker Compose

Multi-Container GovReady-Q and NGINX via Docker Compose

Overview

This directory contains configuration files that run two Docker containers, one for GovReady-Q and the other for NGINX, as a multi-container app. NGINX is used in a reverse proxy configuration, to handle incoming HTTP and HTTPS requests, which it then passes to GovReady-Q.

Use Docker Compose [https://docs.docker.com/compose/] to manage the multi-container app.

Docker Compose commands are similar to, but different from, regular Docker commands. Read the Docker Compose docs for more details.

Set Up A Docker Host

Workstation

Install Docker [https://docs.docker.com/install/] and Docker Compose on your workstation.

	On Mac and Windows, Docker Compose is included as part of the Docker install.

	On Linux, after installing Docker, install Docker Compose [https://docs.docker.com/compose/install/#install-compose]. Also, you may want to grant non-root users access to run Docker containers [https://docs.docker.com/engine/installation/linux/linux-postinstall/#manage-docker-as-a-non-root-user].

Docker Machine

Docker Machine [https://docs.docker.com/machine/] can be used to set up Docker host on either a local or cloud server. Once you have configured your shell to connect to a Docker host set up by Docker Machine, the Docker Compose commands you need to use will be the same as if you were using the Docker engine running on your workstation as the Docker host.

Get This Kit

Get the files by cloning the GovReady-Q repository.

git clone https://github.com/GovReady/govready-q.git
cd govready-q/deployment/docker-compose-nginx/

Make sure you are in the ``docker-compose-nginx`` directory.

Any docker-compose commands will need the docker-compose.yml file to know which containers to operate on.

SSL/TLS Certificates for HTTPS

There are self-signed certs including in the nginx directory. They are copied into the nginx container for nginx to refer to.

Self-signed certs are sufficient to allow GovReady-Q and NGINX to work together with your browser. However, you will get a security exception notice from your browser, and you will have to approve the “unsafe” exception to proceed.

To use real certs issued against a CA your browser will recognize, you can replace the cert.pem and key.pem files and issue the docker-compose build file, or you can mount a data volume with your certs in it to /etc/pki/tls/certs/ .

Later versions of this project may include more documentation about the volume method, or other ways to include certs, such as Let’s Encrypt [https://letsencrypt.org/].

Build Images

You need to build images whenever you make changes to the Dockerfiles or nginx config file. If you don’t make changes, though, the command in the next section will automatically build the images.

To build the images:

docker-compose build

Run GovReady-Q + NGINX Multi-container App

To start the containers:

docker-compose up -d

Using the -d detaches the containers and runs them in the background.

If you prefer, you can omit -d, and then output will be printed to your console window. If you hit ^C, the containers will shut down gracefully. If you hit ^C^C they will be terminated immediately.

Two containers will be created, one for each “service” (as they’re called in Docker Compose).

Docker Compose gives these containers names like docker-compose-nginx_govready-q_1 and docker-compose-nginx_nginx_1. These are three-part names, with the parts separated by underscores. docker-compose-nginx comes from the name of this project (the directory it’s in). The second element is the service name (govready-q or nginx). The third element is a serial number (ascending from 1) for multiple instances of the same service. The docker-compose.yml file here only specifies one instance, so the number will always be 1.

You can check the status of the containers:

docker-compose ps

Specify Parameters

Before starting the containers, you can specify which GovReady-Q image to use, which database host to use, and the hostname of the Docker host. It’s important to specify the correct hostname if you are using real TLS certs.

Set these environment variables (sample values provided, replace with your own values):

export GOVREADY_Q_HOST=ec2-nnn-nnn-nnn-nnn.us-east-1.compute.amazonaws.com
export GOVREADY_Q_DBURL=postgres://govready_q:my_private_password@grq-002.cog63arfw9bib.us-east-1.rds.amazonaws.com/govready_q
export GOVREADY_Q_IMAGENAME=govready/govready-q-0.9.0

After setting the variables, continue with the “Run GovReady-Q + NGINX Multi-container App” section above.

If you don’t set enviroment variables, these defaults are used:

export GOVREADY_Q_HOST=test.example.com
export GOVREADY_Q_DBURL=
export GOVREADY_Q_IMAGENAME=govready/govready-q

When no DBURL is specified, GovReady-Q uses an internal sqlite database.

Check Logs From A Container

Check the logs by specifying the service name:

docker-compose logs govready-q

docker-compose logs nginx

GovReady-Q Is Up

GovReady-Q will boot up, and be ready to answer web requests in 20-30 seconds.

It will answer HTTP on the standard port, 80, and HTTPS on the standard port, 443.

Visit https://localhost/. (Or http://localhost, which will be redirected to https by nginx.)

The default hostname used for this project is test.example.com. To check it, put this entry in your /etc/hosts file:

127.0.0.1 test.example.com

When you have /etc/hosts set up, visit https://test.example.com/

Execute A Script In A Container

You can exec a script inside one of the containers by specifying the service name. Unlike normal docker, you do not specify -it to make the exec interactive.

Here we are executing the first_run script inside the govready-q service/container.

docker-compose exec govready-q first_run

Stop And Remove Containers

To stop and remove containers:

docker-compose down

 Environment Settings

Environment Settings

Available Configuration Settings

The following environment variables are used to configure your GovReady-Q instance and can be configured through your local local/environment.json or passed in as environmental parameters when launching a container with GovReady-Q.

	admins: used to configure a display point of contact “Administrator” on site and unrelated to the configuration of actual administrators configured in the database.

	branding: used for custom branding

	db: if supplied, this is the DB connection used. See DB configuration.

	debug: should be false or absent in production environments. If set to true, turns on certain debug/development settings.

	email: used to configure access to a mail server for sending and receiving email. Ojbect has the following format: {"host": "smtp.server.com", "port": "587", "user": "...", "pw": "....",
"domain": "webserver.hostname.com"}. See Configuring email and Other Configuration Settings.
},.

	govready_cms_api_auth: used to store API key to interact with GovReady’s CMS agent and dashboard. Not relevant to most users. See [GovReady-CMS-API](https://github.com/GovReady/GovReady-CMS-API).

	host: this is the domain name (HTTP Host header) used for root-level GovReady-Q pages. See also organization-parent-domain, which is used to construct organization subdomains (if using a different base domain).

	https: set to true to generate HTTPS headers and urls when site is running behind a proxy terminating HTTPS connections. See Configuring a Reverse Proxy Webserver for Production Use.

	mailgun_api_key: used to hold API key for using mailgun to send/receive emails.

	memcached: if setting is true, enable a memcached cache using the default host/port

	organization-parent-domain: this is the domain name (HTTP Host header) suffix used for organization-specific GovReady-Q pages.

	organization-seen-anonymously: show list of all created organizations to an anonymous (e.g., not signed-in) user on home page if set to true.

	secret-key - used to make instance more secure by contributing a salt value to generating various random strings and hashes. Do not share.

	single-organization: used to enforce single organization mode with “main” as subdomain of default organization instead of multi-tenant with different subdomains for different organizations.

	static: used to prepend a root path to the default /static/ URL path for accessing static assets.

	syslog: used to set the host and port of a syslog-compatible log message sink. (Default: None.)

	trust-user-authentication-headers: used to activate reverse proxy authentication. See Proxy Authentication Server.

Production Deployment Environment Settings

A production system deployment may need to set more options in local/environment.json. Here are recommended settings:

{
 "debug": false,
 "admins": [["Name", "email@domain.com"], ...],
 "host": "q.<yourdomain>.com",
 "https": true,
 "secret-key": "something random here",
 "static": "/root/public_html"
}

Enterprise Single-Sign On Environment Settings

GovReady-Q supports Enterprise Login via IAM (Identity and Access Management). In this configuration, GovReady-Q is deployed behind a reverse proxy that authenticates users and passes the authenticated user’s username and email address in HTTP headers.

To activate reverse proxy authentication, add the header names used by the proxy to your local/environment.json, e.g.:

{
 "trust-user-authentication-headers": {
 "username": "X-Authenticated-User-Username",
 "email": "X-Authenticated-User-Email"
 },
}

GovReady-Q must be run at a private address that cannot be accessed except through the proxy server. The proxy server must be configured to proxy to GovReady-Q’s private address. See Enterprise Single-Sign On / Login for additional details.

Custom Branding Environment Settings

You may override the templates and stylesheets that are used for GovReady-Q’s branding by adding a new key named branding that is the name of an installed Django app Python module (i.e. created using manage.py startapp) that holds templates and static files. See Applying Custom Organization Branding.

 Enterprise Single-Sign On / Login

Enterprise Single-Sign On / Login

Proxy Authentication Server

GovReady-Q can be deployed behind a reverse proxy that authenticates users and passes the authenticated user’s username and email address in HTTP headers. In this configuration:

	The user points their browser to the reverse proxy authentication server.

	The proxy authenticates users and proxies the request to GovReady-Q if and only if the user is authenticated and authorized to access GovReady-Q. The proxy passes the user’s username and email address in HTTP headers of the proxy’s choosing.

	GovReady-Q will create a user account for a new user or treat the user as logged in as soon as the user requests a page. Therefore, there is no sign-up or log-in process within GovReady-Q when a proxy authentication server is used.

	All other authentication methods to GovReady-Q are disabled when proxy authentication is enabled. Therefore you should ensure that the Django admin’s username matches the admin’s username as provided by the proxy server. Otherwise, you will lose access to the admin page. However, if there is a mismatch, you may disable proxy authentication, log in to the Django admin with your admin username and password, and change your admin username to match the username sent by the proxy server.

	GovReady-Q must be run at a private address that cannot be accessed except through the proxy server.

To activate reverse proxy authentication, add the header names used by the proxy to your local/environment.json, e.g.:

{
 "trust-user-authentication-headers": {
 "username": "X-Authenticated-User-Username",
 "email": "X-Authenticated-User-Email"
 },
}

The proxy server must be configured to proxy to GovReady-Q’s private address. But the host and https settings in GovReady-Q’s local/environment.json file must reflect the host and protocol used in the URL the end user uses to access GovReady-Q. They do not need to match the address that the proxy server uses to reach the GovReady-Q server.

Per the Django Documentation [https://docs.djangoproject.com/en/dev/howto/auth-remote-user/] on authentication using REMOTE_USER, you must be sure that your proxy server always sets or strips the special username and email headers, including headers that normalize to the same Django key (in particular headers with underscores), from the client request and does not permit an end-user to submit a fake (or “spoofed”) header value.

We have an example reverse proxy authentication server at https://github.com/GovReady/govready-q/tree/master/tools/simple_iam_proxy_server which can be used for debugging purposes.

 Applying Custom Organization Branding

Applying Custom Organization Branding

The look and feel of GovReady-Q can be customized a bit by overriding the Django templates that are used to construct the site’s pages and by serving additional static assets.

Custom branding can contain static assets (such as a logo image) and HTML template overrides. Branding is packaged into a directory with a particular directory layout and some Python boilerplate code that allows GovReady-Q to find the branding files. The directory is placed inside the main GovReady-Q directory, and an application setting is used to activate it.

Before setting out to create custom branding, make sure you have GovReady-Q set up for development on your workstation. You’ll need a working setup of GovReady-Q to create the branding directory and to test your changes.

Creating the branding directory

Custom branding is packaged inside what Django confusingly calls an application [https://docs.djangoproject.com/en/2.1/ref/applications/], but it is just a packaged sub-component of a website. To create a new branding package directory, change to the directory where you have GovReady-Q set up. Then run:

python3 manage.py startapp sample_branding

This command creates a new directory called sample_branding with Python boilerplate code to make it a valid Django “application.”

Make directories for storing the custom static assets and templates:

mkdir sample_branding/static
mkdir sample_branding/templates

Activate the branding package

Next, let your development installation of GovReady-Q know that you want to use the custom branding package. In your local/environment.json file, add a setting named branding and set it to the name of the custom branding package directory.

"branding": "sample_branding",

See Environment Settings for more information about the local/environment.json file. Note that for the file to be valid JSON the last setting cannot have a trailing comma.

Overriding templates

Any of the templates that make up GovReady-Q’s frontend can be overridden. The full list of templates can be browsed in GovReady-Q’s GitHub repository at

https://github.com/GovReady/govready-q/tree/master/templates

Start by trying to override the navbar.html template, which is inserted at the top of every page. Use your favorite text editor to create a file at sample_branding/templates/navbar.html. Copy the content of GovReady-Q’s stock navbar.html from https://github.com/GovReady/govready-q/blob/master/templates/navbar.html into it. (GitHub’s “Raw” button is handy for getting a clean version to save or copy/paste.)

At the bottom of the file, add some custom HTML, such as:

<div>
 Welcome to my organization’s custom site!
</div>

Start GovReady-Q on your workstation (see the development docs) and visit a page. You should see your new content below the navbar at the top of every page.

Adding custom CSS

You can also add a custom CSS stylesheet to your branded GovReady-Q by taking the following steps:

	Add the CSS file as a static asset.

	Insert a <link rel="stylesheet" href="..."> tag into the <head> section of each page’s HTML by overriding the head.html template.

To create the static asset, make a new file named sample_branding/static/custom.css. Let’s say you want to make the background color of each page red. The file should contain:

body {
 background: red !important;
}

Then override the head.html template. GovReady-Q’s base for head.html is empty — its purpose is only to allow you to add to the <head> element. So create a new file at sample_branding/templates/head.html and put in it:

{% load static %}
<link rel="stylesheet" href="{% static "custom.css" %}">

See the Django documentation for static files [https://docs.djangoproject.com/en/2.1/howto/static-files/] for more information about the static template tag.

Open any page in your locally running GovReady-Q and you should see that the background color of every page has changed.

Keeping your templates up to date

With each new released version of GovReady-Q, there is the possibility that the stock templates have changed. Some changes may require you to re-engineer your template overrides to preserve functionality.

Creating a custom Docker image

If your organization is deploying GovReady-Q using Docker, you will need to embed your custom branding package within a Docker image. You have two options:

	Modify GovReady-Q’s stock Dockerfile, i.e. the one in GovReady-Q’s source code, to add and activate your branding package and then build your own GovReady-Q Docker image from the GovReady-Q source files that you cloned from GitHub.

	Make your own Dockerfile that uses a released GovReady-Q image as its parent image and adds to it just the steps needed to add and activate your branding package.

Creating your own Dockerfile that uses a released GovReady-Q image as its parent image

We recommend method 2. To create your own Dockerfile that uses a released GovReady-Q image as its parent image, create a new Dockerfile in your branding package directory, e.g. a new file named Dockerfile in the sample_branding directory you created earlier.

Then choose which parent image you will use from the available GovReady-Q tags [https://hub.docker.com/r/govready/govready-q/tags]. Each tag corresponds to a release version. Your Dockerfile begins with a FROM line that combines govready/govready-q: with the tag name you choose. In this example we use the latest tag which is an alias for the most recent version of GovReady-Q:

FROM govready/govready-q:latest

The subsequent commands in your Dockerfile configures the container, picking up where the parent image’s Dockerfile leaves off. For more information about the parent image, refer to GovReady-Q’s Dockerfile on GitHub [https://github.com/GovReady/govready-q/blob/master/Dockerfile].

Your Dockerfile’s next step is to add your branding package into the image in a directory named branding:

RUN mkdir branding
COPY . branding

Finally, you’ll need some commands to adjust permissions, to activate the branding package when GovReady-Q starts, and to prepare the static assets to be served. The complete Dockerfile should look like this:

Build an image on top of the stock GovReady-Q image.
FROM govready/govready-q:latest

The parent Dockerfile ends with 'USER application' to run the
container as a non-privileged user. But we need to go back to
root to add additional files and then switch back to the non-
root user at the end.
USER root

Copy our public app files into place.
RUN mkdir branding
COPY . branding

Activate the branding package. The environment variable is read
by dockerfile_exec.sh in the GovReady-Q parent image. And modifying
/tmp/environment.json is necessary at this step so that collectstatic
picks it up below.
ENV BRANDING branding
RUN sed -i "s/}/,\"branding\": \"branding\" }/" /tmp/environment.json

Flatten static files. The base image did it once, but we may have
added new static files so we must do it again.
RUN python3.6 manage.py collectstatic --noinput

Run the container's process zero as this user --- see above.
USER application

Check that everything looks good.
RUN python3.6 manage.py check

Finally you can build and test your custom image.

Building your docker image

If you were in the GovReady-Q sources directory, move into your branding package directory:

cd sample_branding

Then fetch the parent image and build your image:

docker image pull govready/govready-q:latest
docker image build --tag myorg/govready-q-branded:latest .

(Substitute the right tag depending on the tag you chose for the FROM line in your Dockerfile.)

Test that your image works by launching a new container based on your image:

docker container run --rm -it -p 127.0.0.1:8000:8000 myorg/govready-q-branded:latest

Once GovReady-Q is running in the container, visit it at http://localhost:8000. Use CTRL+C in the console to terminate and destroy the test container running your image.

For more about running GovReady-Q with Docker, see Deploying with Docker.

 Permissions

Permissions

This document describes the user permissions model in Q.

What Q tracks

GovReady-Q tracks the following major entities

	Users - individuals with logins to an installed instance of Q

	Organizations - entities, e.g., companies, around with data in Q is segmented

	Folders - collections of Projects

	Projects - instantiations of Compliance Apps

	Membership - associating individual users with organizations and systems

	Tasks/Modules - coherent grouping of questions and educational content

	Questions/Answers - specific snippet of content within a Task

	Templates - drives automatic generation of artifacts, supporting variable substitution

Users

Global user data

A User is authenticated by a unique username and a hashed password.

Each User has one or more email addresses associated with their account and notification email settings.

User accounts — i.e. the fields above — are global to a Q deployment. They are not segmented by Organization. For instance, if a User has been created for one Organization, they sign in — and not sign up — into other Organizations. Changing a User’s password changes it for all Organizations. (Of course, a User will not be authorized to access all Organizations. See the next section on Organizations.)

Segmented user data

Each User additionally has a unique “organization user profile” associated with each organization to support the same User having different roles at different organizations. (This user profile is an “account project” that holds additional User information including a User’s full name, profile photo, etc. In short, each User has a different profile in each Organization.

The profile information can be seen by all other members of the Organization because it is used in the history of question answers, notifications, discussions, and many other places.

(The User is the only “member” of their account projects (see Project membership below), which means they are the only User who can edit the information.)

System staff

Users marked as staff in the Django admin can see Q Analytics.

Portfolios

Portfolios are used to segment Projects and the data contained within them to create data isolation at a logical level.

Access to Portfolios

Each Portfolio begins with an ‘owner’ creating the portfolio. When any user signs up, a portfolio is automatically created with the title as the users username and assigning ownership to the user. An owner of a portfolio can grant other users access to their porfolio. If a user has access to a portfolio, they will have access to the projects within that portfolio. If an owner of a portfolio removes a users access to a portfolio, they will lose access to the projects within that portfolio.

Folders

A Folder is a collection of one or more Projects (see below) within the same Organization.

Folder permissions are based in part on Project permissions:

	A user can see that a Project is a part of a Folder if the user has read access on the Project.

	A user can add Projects to a Folder or rename a Folder if the user is an administrator of any Project within the Folder or is an administrator of the Folder itself. These users may not be able to see all Projects within the folder if they do not have read access to those Projects, but they will be told how many Projects they can’t see in the Folder.

There is no separate “read” permission on a Folder. A Folder can be seen just when a user has read access on a Project within it or is an administrator of the Folder itself.

Projects

Each time an app is started from the Compliance Store, a new Project is created. A Project represents the instantiated app and is comprised of a collection of Tasks. Every Project belongs to exactly one Organization.

Membership

Projects have zero or more Users who are members and zero or more Users who are administrators.

Read Access

Any access to a Project requires read access, which is granted if any of the following are true:

	They are a member or administrator of the Project.

	They have read access to any Task in the project.

	They are a guest participant in a Discussion within the Project.

(This is a subset of the requirements for membership in an Organization, therefore read access to a Project guarantees membership in the Organization it belongs to.)

Operations

Project members can begin Tasks listed on Project pages, either by adding apps from the Compliance Store or starting Tasks for modules contained in the Project’s app. Project members can also invite guests to discussions.

Only administrators can send invitations to add new project members, import and export Project data, and delete Projects.

The Tasks (the questions and answers) within a Project are further restricted (see Tasks below).

New Projects

Any member of an Organization can create a new Project within that Organization by starting a new Compliance App and becomes the Project’s first administrator.

When a User creates a new Project, they are offered Compliance Apps from AppSources whose Available to all option is checked and from AppSources that don’t have ‘Available to all’ checked but explicitly list the Organization in its ‘Available to orgs’ list.

New Projects are added into a new or existing Folder (for existing folders, see Folder permissions above).

Tasks

A Task is a set of questions and answers. Tasks represent the state of a Project — each Project has a root Task — as well as the state of all the modules started within the Project.

Each Task belongs to exactly one Project. Each Project has exactly one root Task.

A Task has an editor, which is the User who has primary responsibility for completing the Task.

A User has both read and write access to a Task if any of the following are true:

	They are the editor of the Task.

	They are a member or administrator of the Project that the Task belongs to.

A User with read access can see the Task on the page for the Project that it belongs to and can see all of its questions, answers, and outputs and can start a Discussion on questions.

A user can also see a particular question within a Task (and its answers and some Task metadata, but not other questions or Task outputs) if they are a guest in a Discussion on that question.

A User with write access to a Task can answer questions within the Task (which sometimes involves starting new Tasks which they become the editor of), invite other users to become the Task’s new editor, and delete/undelete the Task (although there is no UI for that currently).

 Authoring Compliance Apps

Authoring Compliance Apps

	Understanding Compliance Apps
	Compliance Apps are Collections of Modules

	App Structure

	App YAML
	Hide “Question Skip” Buttons

	Top Level Apps

	Adding Apps to GovReady-Q Deployments
	App Source virtual filesystem layout

	Updating modules

	Compliance App Authoring Tutorial
	Step 1: Prepare your local environment
	Create a folder on your workstation

	Install Docker

	Step 2: Install the GovReady-Q Compliance Server, Docker version
	Starting the Docker container

	Setting up your organization and administrative user

	Step 3: Creating a compliance app
	Creating the app

	Editing app catalog metadata

	Step 4: Edit the compliance app’s YAML files
	Start the app

	About editing the app

	Editing the app’s main page

	Editing the app’s first module

	Step 5: Edit a compliance app using GovReady-Q’s authoring tools
	About the authoring tools

	Editing a question

	Adding questions

	Step 6: Deploy the app to a production instance of GovReady-Q
	Adding apps to a git repository

	Configuring a production system to load apps from the git repository
	If your git repository is public or accessible over an https: URL

	If your git repository is private

	Other information about App Sources

	Advanced setups for development with a repository of apps

	App Sources
	App Source Slug

	App Source Type
	Local Directory
	Git Repository over HTTPS

	Git Repository over SSH

	GitHub Repository using the GitHub API

	Controlling access to apps
	App executable content

	Modules, Questions, and Documents YAML Reference
	Module
	Additional fields for projects
	Question Fields

	Output Document Fields

	Test Answers

	Documents
	Document Format
	Additional Markdown Notes

	Document Templating

	Project Documents

	Module Assets
	Static Assets

	Private Assets

	Questions
	Question Types
	text

	password

	email-address

	url

	longtext

	date

	choice

	yesno

	multiple-choice

	integer

	real

	file

	module, module-set
	Example

	App protocols

	Question type details

	interstitial

	raw

	Imputing Answers

	Question Order

	Updating Modules

 Understanding Compliance Apps

Understanding Compliance Apps

Compliance apps map IT System components to compliance controls. A “component” can be any part of a system that contributes to its operation including organizational processes.

Compliance apps collect and assess information about one or more system components and translate that information to compliance documentation.

[image: Apps map components to security/compliance controls]
Compliance apps can collect information about a system component from people (via web-based questionnaires) and from system components (via an Automation API).

Compliance Apps are Collections of Modules

A Compliance app is a collection of “modules” for gathering information. A module is a collection of questions and output documents. A module can have just questions and output documents, just output documents and no questions, or both questions and output documents.

An “app” is a collection of “modules,” one of which must be named “app.” Modules are linear sequence of questions presented to users that produces zero or more output documents. Modules are stored in YAML files. Output documents of various types are supported such as markdown, HTML, and YAML. (See Modules, Questions, and Documents for documentation on writing modules.)

The typical user experience will be to first pick a “top level” app from the compliance catalog representative of IT System, then pick the “component” apps that represent the specific components of the IT System, and then iteratively complete the questions within the component apps modules.

Technically speaking, a top level app is a module containing questions whose answers are other apps.

The below diagram depicts an exploded view of the relationships between a top level app to a component app to modules and questions.

[image: "Top Level" compliance apps contain "component" compliance apps that contain modules and questions]

App Structure

Each app is defined by a set of YAML files and asset files stored in the following directory structure:

app_name
├── README.md
├── app.yaml
├── assets
│ ├── app.png
│ ├── image_one.yaml
│ ├── image_two.yaml
│ └── ...
├── module_one.yaml
├── module_two.yaml
└── ...

By convention, each app is required to have app.yaml file which holds metadata for displaying the app in the compliance apps catalog, such as its title and description, and an assets/app.png graphic which displays as the app’s icon. app.yaml also holds the top-level module questions which define the layout of the app’s main screen once it is started by the user. The contents of README.md are also displayed in the apps catalog.

Other module YAML file may be includes in the app as well, as needed.

The assets subdirectory can contain any static assets that will be served when showing the app’s modules for the user, such as images included in document templates. A file typically named app.png in the assets directory is the app’s icon, which is displayed when browsing the app catalog as well as when the app is used within another app, if icon: app.png is specified in app.yaml.

App YAML

The app.yaml file that exists in every app serves two purposes:

	It includes app catalog information, i.e. metadata, that will be shown in the app directory, such as the app’s short and long description, version number, vendor, etc.

	It also defines a module (see Modules, Questions, and Documents) which defines the top-level layout of the app. The module may only contain questions whose type are module or module-set.

The app.yaml file looks like this:

[image: App structure]
id: app
title: My App
type: project
icon: app.png # refers to file in app's assets directory
protocol: # for inner apps only
- globally_unique_protocol_name

catalog:
 categories:
 - Category Name
 - Another category name
 vendor: GovReady PBC
 vendor_url: https://www.govready.com
 status: Operational
 version: 0.6
 version-name: First Release
 source_url: https://github.com/GovReady/govready-app-example
 description:
 short: |
 One-line description of the app here, using Markdown.
 long: |
 Long description of the app here only if README.md is
 not present.

 It can be multiple paragraphs and is Markdown.
 recommended_for:
 - key_short: Org
 value: Medium
 - key_short: Tech
 value: Drupal
 - key_short: Role
 value: Dev

questions:
 - id: item1
 title: Do A Thing
 type: module
 module-id: module1 # refers to module1.yaml within this app
 tab: TabName
 group: GroupName
 ... more questions here ...

output:
 - tab: TabName
 format: markdown
 template: |
 This (optional) content will appear at the top of the TabName tab.

The questions in the app YAML file can only be of type module and module-set. The questions can specify a module-id to refer to another module within the same app or a protocol to allow the user to choose any app that has a matching protocol value set at the top level of the YAML file. See Modules, Questions, and Documents for details on these question types.

A module YAML structure is identical to app.yaml structure but without the catalog details section.

Hide “Question Skip” Buttons

As of version 0.8.6, the “I don’t know” and “It doesn’t apply” buttons to skip questions can be hidden from users.

We recommend you never use this feature.

This feature was added to support the use case of complex, legacy questionnaire assessments that (1) cannot be changed easily and (2) provide a better user experience when users get stuck and start a discussion instead of later learning that skipping a question caused them to miss many other questions.

Some background is useful. GovReady-Q was designed for users to love easily and quickly answering as few questions as possible to generate the information that organizational processes need. Users love the option to skip questions. Skipped questions empower users to move fast, answer what they can, and iteratively complete work. That gets information to you quickly and reduces cycle time. Skipped questions also provide instant feedback that a user doesn’t have information readily available. Frequently skipped questions indicate stumped users, and the need to rethink the question or use multiple questions and interstitials to better guide users.

We’ve all experienced the frustration of not understanding what is being asked of us, not knowing whom to ask for help, or knowing the question asked does not apply. This frustration turns galling and Kafkaesque when the party demanding compliance confounds our ability to comply.

Fight-or-flight response kicks in when users feel trapped. Users start to avoid your process or combat it. They can (unfairly) transfer their frustration onto your role, or worse, onto you. Instead of helping to pull your colleagues into your process, they feel you are pushing them away.

So if you really, really need to hide the skip buttons to make the experience easier for your users, add a hidden-buttons array key to the app.yaml file and list the skip buttons to hide. The example snippet below hides just the “I don’t know button”.

id: app
title: My App
type: project
icon: app.png # refers to file in app's assets directory
protocol: # for inner apps only
- globally_unique_protocol_name
hidden-buttons:
- no-idea

The possible YAML array values for the buttons are no-idea (“I have no idea”), not-applicable (“It doesn’t apply”), not-now-button (“I’ll come back”), and not-sure-button (“Unsure”).

NOTE: As of version 0.8.6, the “I’ll come back” and “Unsure” functionality been removed from the UI for all cases because of poor user experience but are preserved for legacy data and potential future use with a better UI.

Top Level Apps

Apps that describe the required components of a compliant IT system are considered “Top Level” apps. Each question in a Top Level app specifies a type of compliance app (e.g., a compliance app “protocol”) that is needed to represent that component.

Adding Apps to GovReady-Q Deployments

Separating compliance apps from the compliance server enables a much richer ecosystem and virtuous cycle of innovation than having everything embedded exclusively within the compliance server. A GovReady-Q deployment can pull app and module content from local directories and git repositories. An organization using GovReady-Q can freely mix compliance apps from third parties with private compliance apps located only on their network.

Compliance apps are very much like modular plugins that customize the compliance server to the unique system and components of the organization.

This leaves the need to specify which compliance apps are available to a compliance server deployment. This specification of available apps is known as an “app source” and is done with a JSON “spec” file entered in the AppSource model via the Django admin interface.

The process is currently a bit clumsy with terminology that reflects the software’s evolution toward the app concept. Nevertheless, the approach provides flexibility of sourcing apps from local file systems and public and private git repositories. And each source specifies a virtual filesystem from which one or more top level apps and compliance apps can be found located.

The below screenshot of the AppSource module in the Django admin interfaces shows the JSON “spec” file.

[image: Screenshot of AppSource from GovReady-Q Django admin interface]
The AppSource module also contains fields to indicate to which subdomains of the deployment the source’s apps are available.

App Source virtual filesystem layout

Whether the source is a local directory or a git repository, the source must have a directory layout in which each app is stored in its own directory. (The directory name becomes an internal name for the app.) For instance:

app1/app.yaml
app1/...other_app1_files
app2/app.yaml
app2/...other_app2_files
...

Updating modules

After making changes to modules or AppSources for system modules (like account settings), run python3 manage.py load_modules to pull the modules from the sources into the database. This only updates system modules.

Other modules that have already been started as apps will not be updated. Each time you make a change to an app, you can reload changes using the app authoring tool in GovReady-Q.

 Compliance App Authoring Tutorial

Compliance App Authoring Tutorial

This is a step-by-step guide to creating compliance apps using the Docker version of the GovReady-Q Compliance Server.

In this guide you will learn how to:

	Start and configure the Docker version of GovReady-Q

	Create a compliance app

	Edit a compliance app’s YAML files

	Edit a compliance app using GovReady-Q’s authoring tools

	Deploy the app to a production instance of GovReady-Q and storing apps in a source code version control repository

Step 1: Prepare your local environment

Create a folder on your workstation

GovReady-Q compliance apps are generally developed in an off-line development environment, usually on the app developer’s macOS or Linux workstation — any environment that can run Docker. In this environment, the compliance app data files will be stored in a local directory. This guide assumes the use of a local workstation for development and discusses production deployment at the end.

(Once the apps are ready to be published to the rest of the organization, the apps can be uploaded to a git repository, such as GitHub or an on-premise equivalent. The production instance of GovReady-Q will typically read compliance apps from the git repository directly and not from a local disk.)

On the development workstation, create a folder to hold GovReady’s install script, the GovReady-Q database (in development, Sqlite is used), and the compliance apps that you will be authoring. The folder can be anywhere:

mkdir /path/to/dev_directory
cd /path/to/dev_directory

Install Docker

If you haven’t already done so install Docker [https://docs.docker.com/engine/installation/] on the workstation and, if appropriate, grant non-root users access to run Docker containers [https://docs.docker.com/engine/installation/linux/linux-postinstall/#manage-docker-as-a-non-root-user] (or else use sudo when invoking Docker below).

Step 2: Install the GovReady-Q Compliance Server, Docker version

Starting the Docker container

Next download GovReady’s docker_container_run.sh script. This script simplifies passing various settings to create and configure the govready-q docker container that we will use for local development.

wget https://raw.githubusercontent.com/GovReady/govready-q/master/deployment/docker/docker_container_run.sh
chmod +x docker_container_run.sh

docker_container_run.sh supports a variety of advanced configuration settings via command line parameters. The ones we care about for developing compliance apps are:

	--sqlitedb /path/to/govready-q-database.sqlite, which sets an absolute path to a Sqlite database that holds all persistent information across container runs

	--appsdevdir /path/to/apps, which sets an absolute path to the directory in which app YAML files will be developed

	--relaunch, which removes any existing govready-q Docker container if one is running

Download and start GovReady-Q:

./docker_container_run.sh --sqlitedb `pwd`/database.sqlite --appsdevdir `pwd`/apps --relaunch

Note that pwd is used to ensure the paths are absolute.

The script will download the govready/govready-q image [https://hub.docker.com/r/govready/govready-q/] from the Docker Hub, which could take a few minutes. It will then start a new Docker container named govready-q and will launch the Q source code within it.

When the container is launched it will let you know the URL to visit:

GovReady-Q has been started!
Container Name: govready-q
Container ID: d99e8ac2d6a761cfd7be7f94bd01d5f7115efd66714064f7b1f0f6c09b74c269
URL: http://localhost:8000

(You can change the hostname and port by adding e.g. --address q.company.com:8010.)

It takes about 15 seconds for the GovReady-Q server to be ready. Open the URL (e.g. http://localhost:8000) and reload a few times until the GovReady-Q Compliance Server becomes available:

[image: First run of GovReady-Q]

Setting up your organization and administrative user

Now that the GovReady-Q Compliance Server is running, create an administrative account and an organization. Run the following command and answer the prompts:

docker container exec -it govready-q first_run

Your prompt and reply will look something like this:

Installed 2 object(s) from 1 fixture(s)
Let's create your first Q user. This user will have superuser privileges in the Q administrative interface.
Username: admin
Email address: admin@mycompany.com
Password:
Password (again):
Superuser created successfully.
Let's create your Q organization.
Organization Name: The Company, Inc.

Now return to your browser, reload the page, and notice the company name has updated:

[image: First run of GovReady-Q with the organization configured]
You can now sign in with the administrative username and password you created.

[image: First run after logging in]
Congratulations! You’ve installed GovReady-Q Compliance Server configured for local development of compliance apps!

Step 3: Creating a compliance app

Creating the app

In this section we’ll create our first compliance app. The app will appear in the compliance apps catalog in GovReady-Q. Click Add other app in your browser to go to the compliance apps catalog.

[image: Compliance apps catalog]
Let’s create our first compliance app! Use the command below:

docker container exec -it govready-q ./manage.py compliance_app host myfirstapp

The output will be:

Created new app in AppSource host at /usr/src/app/q-files/myfirstapp

The path shown in the output is a path within the container’s filesystem, which is inaccessible from the workstation. The actual path is inside the path given to the --appsdevdir command line argument previously. If you followed our steps above exactly, you can see the app’s files in your apps folder:

$ ls -l apps/myfirstapp
-rw-r--r-- 1 root root 664 Oct 25 11:43 app.yaml
drwxr-xr-x 2 root root 4096 Oct 25 11:43 assets
-rw-r--r-- 1 root root 449 Oct 25 11:43 example.yaml

Head back to your browser and reload the compliance apps catalog page.

Your new app may not appear because the catalog is cached. To clear the cache, restart the container:

docker container restart govready-q

After a few moments the container will be back up. Reload the compliance app catalog page. You should now see your app if you scroll to the end:

[image: Compliance apps catalog with your first app]
The development directory on the workstation now holds:

.
├── apps
│ └── myfirstapp
│ ├── app.yaml
│ ├── assets
│ │ └── app.png
│ └── example.yaml
├── database.sqlite
└── docker_container_run.sh

(More information about the structure of the app directory can be found in Understanding Compliance Apps.)

Editing app catalog metadata

Open apps/myfirstapp/app.yaml in a text editor. Edit the short description and add some text describing the app you are building:

description:
 short: |
 Achieve compliance for our organization's systems.

Since this file was created by Docker, which is running as root, the file will be owned by root. You may need to use sudo to edit this file.

Reload the container to clear the app catalog cache:

docker container restart govready-q

And then reload the catalog page in your browser to see your description beneath myfirstapp. You can also edit the app’s title and other catalog metadata, including the app’s icon in apps/myfirstapp/assets/app.png.

[image: Compliance apps catalog after metadata change]

Step 4: Edit the compliance app’s YAML files

Start the app

In your browser, click on the myfirstapp entry’s Add button in the app catalog.

[image: The new app]

About editing the app

We can edit our new compliance app by editing its app.yaml and example.yaml files on disk in our favorite text editor (described in this section) or with GovReady-Q’s built-in authoring tools (described in the next section).

After each edit to the compliance apps files on disk, it may be necessary to restart the Docker container if you modified app catalog metadata (as you did above with docker container restart) or start a new instance of the compliance app from the compliance apps catalog page in your browser, if you modified the app’s questions and output templates.

GovReady-Q purposely does not automatically recognize changes to compliance apps on disk until a new instance of the app is selected or a reload command (described below) is issued. This ensures previously loaded versions of the compliance app correctly maintain data entered by end-users.

Editing the app’s main page

The opening screen of the app is determined by the questions section of the app.yaml file:

questions:
- id: q1
 title: Example Module
 type: module
 module-id: example

The new app has a single question labeled by the title Example Module, as you see in the YAML and in your browser. When the user clicks Example Module in the browser, they will start a new module defined by the YAML file referenced in the module-id data, in this case example.yaml.

Edit the title to:

title: Start Compliance

As described above, reloading the page in the browser will not show the change. This is by design. Since you are developing an app on your local filesystem, the GovReady-Q authoring tools are available.

Click Authoring Tool in the right column, and then click Reload App from local filesystem. (Alternatively, you could return to the compliance app catalog page and add the app again.)

[image: Module authoring tools]
Note how Start Compliance now appears in the browser.

[image: Reloaded app]

Editing the app’s first module

Click Start Compliance. This begins the app’s module defined in example.yaml. The example module contains a single sample question:

[image: The new app's sample question]
Open example.yaml and see that the question’s type, prompt, and choices are defined in the YAML file’s question’s section:

questions:
- id: q1
 title: What is your favorite science fiction franchise?
 prompt: What is your favorite science fiction franchise?
 type: choice
 choices:
 - key: startrek
 text: Star Trek
 - key: starwars
 text: Star Wars
 - key: lordoftherings
 text: Lord of the Rings
 - key: other
 text: Other

Change the prompt or choices.

(As with app.yaml, since this file was created by Docker the file will be owned by root. You may need to use sudo to edit this file.)

As described above, reloading the page in the browser will not show the change. This is by design. Go back to the main app page, click Authoring Tool and then Reload App from local filesystem, and then go back to the Start Compliance page.

Your changes are now seen in your browser.

[image: The revised question]
More information about the file format of modules can be found in Modules, Questions, and Documents.

Step 5: Edit a compliance app using GovReady-Q’s authoring tools

About the authoring tools

It is also possible to edit a compliance app’s questions without leaving your browser. When editing the compliance app via GovReady-Q’s built-in authoring tools, you will immediately see the changes in the instance of the compliance app you are editing without having to reload it. The changes are also immediately written to the files on disk.

GovReady-Q’s built-in authoring tools will let you edit and add questions, but currently won’t let you change the name of the description of the app in catalog. You will still need to edit those details in the compliance app YAML files stored on disk, as described above.

Editing a question

A blue pencil icon will appear at the top right of module questions when the authoring tools are available. Click the pencil icon for the sample question. The question editor will pop up:

[image: Question authoring tool]
This is a much easier way of editing questions! Try editing this question. After clicking Save Changes, look in your text editor to see that the changes have been immediately saved to example.yaml.

Adding questions

It is also possible to add questions. In order to add a question, all of the existing questions must be answered. Answer the sample question, or click Skip.

You’ll see an Add Question button on the module review page:

[image: Add question button]
Try out the Add Question button now. It will create a new text question. Use the blue pencil icon to change the question’s prompt and choices.

You have now seen how to create and edit an app!

Step 6: Deploy the app to a production instance of GovReady-Q

Adding apps to a git repository

Your workstation’s instance of GovReady-Q has been configured to load apps from the local filesystem. Your organization’s production instance of GovReady-Q can be configured similarly, but more likely it will be configured to load apps from a remote git repository.

Create a new git repository in your source code control system and push your apps directory to the repository. The repository’s root directory should contain a directory named myfirstapp:

repository root
 └── myfirstapp
 ├── app.yaml
 ├── assets
 │ └── app.png
 └── example.yaml

If you have an existing source code control system containing apps in this layout, consider checking out the repository locally so that it is in the same path provided to the --appsdevdir argument to docker_container_run.sh. If your repository is in a different layout or if you are using multiple repositories to store compliance apps, see below.

Configuring a production system to load apps from the git repository

On the production GovReady-Q instance, log into the Django admin at https://production-q/admin. Add a new App Source.

Set its Slug to a short name for the repository, composed of letters, numbers, and underscores, such as mygitrepo.

If your git repository is public or accessible over an https: URL

If your git repository is accessible over an https: URL (such as a public GitHub repository), change the Source Type to Git Repository over HTTPS and paste the URL into the URL field. The other fields can be left blank. Here’s what that looks like:

[image: App Source for a public git repository]

If your git repository is private

If your git repository is private and accessible instead using an SSH URL (typically git@github.com:organization/repository.git) and an SSH public/private keypair, such as with GitHub or GitLab deploy keys, then first create a new SSH key for your GovReady-Q instance:

ssh-keygen -q -t rsa -b 2048 -N "" -C "_your-repo-name_-deployment-key" -f ./repo_deploy_key

Your GovReady-Q instance will hold the private key half of the newly generated keypair, and your source code control system will hold the public key. Back in the Django admin, set the Source Type to Git Repository over SSH. Paste the SSH URL into the URL field. Then open the newly generated file repo_deploy_key and paste its contents into the SSH Key field. The other fields can be left blank. Here’s what that looks like:

[image: App Source for a private git repository]
Copy the public key in the newly generated file repo_deploy_key.pub into the deploy keys section of your source code repository. Here is what that looks like on GitHub:

[image: Adding a deploy key to GitHub]

Other information about App Sources

As with local development, the production system’s compliance app catalog may be cached. To see new apps, restart the production instance of GovReady-Q.

See App Sources for more information about how to configure your production instance of GovReady-Q to load apps from local filesystem directories, git repositories (including on-prem git repositories), or GitHub.

Advanced setups for development with a repository of apps

In this guide we have used the --appsdevdir command to specify a location in which app YAML files and assets are stored. In a small setup, all apps could be stored in a subdirectory of the location given to --appsdevdir. But you may want to separate apps into different folders, such as if they are divided between folders in a single git repository or across multiple git repositories, then a more advanced configuration of GovReady-Q is necessary.

Imagine the following directory structure where two GitHub repositories are cloned into two separate local directories within apps, and each has a compliance_apps directory holding its apps:

.
├── apps (`--appsdevdir` directory)
│ ├── repo1
│ │ └── compliance_apps
│ │ ├── myfirstapp
│ │ └── mysecondapp
│ └── repo2
│ └── compliance_apps
│ ├── mythirdapp
│ └── myfourthapp
├── database.sqlite
└── docker_container_run.sh

The default setup from GovReady-Q docker installation only show apps in the compliance app catalog if the app files are located in the immediate subdirectory of path configured to load apps. But we can also tell GovReady-Q to load apps from multiple locations. In this case we will configure GovReady-Q to load apps from two locations:

apps/repo1/compliance_apps
apps/repo2/compliance_apps

Recall that the path given to --appsdevdir is mapped to a path within the Docker container so that the container can see the YAML files on the (host) local filesystem. The container sees these directories as

/usr/src/app/q-files/repo1/compliance_apps
/usr/src/app/q-files/repo2/compliance_apps

Log into the Django admin at http://localhost:8000/admin. Add two new AppSource entries:

For the first, set the Slug to repo1 (or any other label that will help you distinguish the two repositories), the Source Type to Local Directory, and the Path to /usr/src/app/q-files/repo1/compliance_apps. For the second, set the Slug to repo2, the Source Type to Local Directory, and the Path to /usr/src/app/q-files/repo2/compliance_apps.

Then restart the container:

docker container restart govready-q

and the apps defined in all of the repositories should be visible in the compliance app catalog.

 App Sources

App Sources

GovReady-Q can be configured by an administrator to load compliance apps from one or more sources, which can be local directories or remote git repositories.

When using the Hosted Version of GovReady-Q, GovReady PBC is the administrator. If you are the administrator of an installation of GovReady-Q at your organization, the information below will help you configure the App Sources available to your users.

App Sources are configured in the Django admin at the URL /admin on your GovReady-Q domain under App Sources:

[image: App Sources list]
Each App Source points GovReady-Q to a directory or repository of compliance apps.

[image: Example App Source]

App Source Slug

The first App Source field is the Slug. The Slug is a short name you assign to the App Source to distinguish it from other App Sources. The Slug is used to form URLs in GovReady-Q’s compliance apps catalog, so it may only contain letters, numbers, dashes, underscores, and other URL path-safe characters.

App Source Type

There are four types of App Sources: local directories, remote git repositories using HTTP which are typically public repositories, remote git repositories using SSH which typically use SSH deploy keys for access, and remote GitHub repositories using a GitHub username and password for access.

Local Directory

The Local Directory source type directs GovReady-Q to load compliance apps from a directory on the same machine GovReady-Q is running on. (When deploying with Docker, that’s on the container filesystem unless a path has been mounted to a volume or to the host machine.)

In the Path field, enter the path to a local directory containing compliance apps. This path is expected to contain a sub-directory for each compliance app contained in this source. For instance, if you have this directory layout:

.
└── home
 └── user
 └── compliance_apps
 ├── myfirstapp
 │ └── app.yaml
 └── mysecondapp
 └── app.yaml

then your Path would be /home/user/compliance_apps.

The path can be absolute or relative to the path in which GovReady-Q is installed.

Git Repository over HTTPS

The Git Repository over HTTPS source type is for git repositories, such as on GitHub or GitLab, that can be cloned using an HTTPS URL. These repositories are typically public, or in an enterprise environment public within your organization’s network.

Paste the HTTPS git clone URL — such as https://github.com/GovReady/govready-apps-dev — into the URL field. Here’s what that looks like:

[image: App Source for a public git repository]
The other fields can be left blank.

The Path field optionally specifies a sub-directory within the repository in which the compliance apps are stored if they are not stored in the root of the repository. For instance if the repository has a directory layout similar to:

.
└── github.com/organization/repository
 └── apps
 ├── myfirstapp
 │ └── app.yaml
 └── mysecondapp
 └── app.yaml

then set the Path field to apps.

If the compliance apps are not in the repository’s default branch (i.e. something other than the typical master default branch), then set the Branch field to the name of the branch to read the compliance apps from.

You can use HTTPS to access private repositories by placing your username and password or personal access token [https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/] into the URL, such as:

https://username:password@github.com/GovReady/govready-apps-dev

Since this requires user credentials, it should be avoided for production deployments in favor of using Git Repository over SSH (see below).

Git Repository over SSH

If your git repository is private and accessible using an SSH URL (which typically looks like git@github.com:organization/repository.git) and an SSH public/private keypair, such as with GitHub or GitLab deploy keys, then use the Git Repository over SSH source type.

Create a new SSH key for your GovReady-Q instance to be used as a deploy key:

ssh-keygen -q -t rsa -b 2048 -N "" -C "_your-repo-name_-deployment-key" -f ./repo_deploy_key

Your GovReady-Q instance will hold the private key half of the newly generated keypair, and your source code control system will hold the public key.

Back in the Django admin, set the Source Type to Git Repository over SSH. Paste the git clone SSH URL into the URL field. Then open the newly generated file repo_deploy_key and paste its contents into the SSH Key field. Here’s what that looks like:

[image: App Source for a private git repository]
The other fields can be left blank. Path and Branch can be set the same as with the Git Repository over HTTPS source type (see above).

Copy the public key in the newly generated file repo_deploy_key.pub into the deploy keys section of your source code repository. Here is what that looks like on GitHub:

[image: Adding a deploy key to GitHub]
Make the key read only by leaving “Allow write access” field unchecked and click Add the key to save the key.

GitHub Repository using the GitHub API

This source type can be used to access private GitHub repositories using a GitHub username and password or a username and personal access token [https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/].

Set the Repository field to the organization name and repository name, separated by a slash, as in the repository’s URL following github.com/. In Other Parameters, paste a small YAML-formatted document holding a GitHub username and password or username and personal access token, formatted as follows:

auth:
 user: 'myusername'
 pw: 'mypassword'

The other fields can be left blank. Branch can be set the same as with the Git Repository over HTTPS source type (see above).

Since this source type requires user credentials, it should be avoided for production deployments in favor of using Git Repository over SSH.

Controlling access to apps

Controlling which organizations in a Q deployment can access which apps is done via the App Sources table.

The “Available to all” field of App Source, which is on by default, gives all users of all organizations the ability to start an app provided by the App Source.

If the “Available to all” field is unchecked, then only users within white-listed organizations can start apps provided by the App Source. The white-list is a multi-select box on the App Source page.

Removing access to a App Source does not affect any apps that have already been started by a user.

App executable content

Apps can contain executable content (some of which is disabled by default):

	JavaScript executed by the client browser contained within page HTML, via module template content.

	JavaScript executed by the client browser served as a static asset and referenced by a <script> tag.

Both sources of Javascript execute within the context of pages on the domain that the Q site itself runs on, which means the scripts have access to the page DOM, cookies, localStorage, etc. These scripts must only be enabled if they are trusted for these environments.

Javascript static assets (but not Javascript in module templates - this is a TODO) are therefore disabled by default. (Javascript static assets are disabled by serving them with an incorrect MIME type.)

To enable these scripts, the Trust assets flag must be true on the App Source that provides the app. This flag must only be true if any Apps provided by the App Source, including Apps already loaded into Q, are trusted to have executable content that may have as much client or server-side access as the Q instance does itself.

 Modules, Questions, and Documents YAML Reference

Modules, Questions, and Documents YAML Reference

A module and its questions are defined in YAML specification files. The schema for the specification files is as follows:

Module

Each file is a Module. A Module has the following required fields:

id: module_id
title: Your Title Here

The module_id must match the file name that the YAML is saved into, without the path or file extension.

Several optional fields can be specified:

type: project
version: 1
instance-name: "Module for {{q1}}"
invitation-message: "Can you tell me about {{question.text}} and let me know when you are done?"
icon: app.png

The type field is set to project just when the Module is to be offered to users when they start a new Project. (system-project is used for project-like modules that are system controlled and not offered to the user.)

The version field is used only to force changes in the specification to be considered incompatible with any existing user answers (see Updating Modules).

The instance-name is a template to generate a dynamic title for in-progress and completed modules. The instance-name is rendered like other Module documents but it is always specified in text format (see Documents).

For modules that define the root of an application, icon specifies a static asset (in the assets directory) to use as an application icon.

In addition, a Module may have an introduction document (for projects, the introduction appears at the top of the project page; for other module types, it appears as an implicit initial interstitial) and a list of one or more output documents. For example:

introduction:
 format: markdown
 template: |
 Welcome to the module.

 This module should take you two minutes.

output:
 - title: Document 1
 format: markdown
 template: |
 # Document for {{project}}

 Hello! This is the output of the module. You answered {{q1}}.

 - title: Document 2
 glyphicon: dashboard
 format: html
 template: |
 <h1># Document for {{project}}</h1>

 <p>Hello! This is the output of the module. You answered {{q1}}.</p>

The format of documents are described in a later section.

Finally, a Module contains a list of one or more Questions:

questions:
 - id: q1
 title: Your Favorite Animal
 prompt: What's your favorite animal?
 type: text

 - id: q2
 title: What Kind of Animal Is It
 prompt: How would you classify this animal?
 type: choice
 choices:
 - key: pet
 text: common pet
 help: Is this animal a common pet?
 - key: wild
 text: wild animal
 help: Is this animal an undomesticated wild animal?

The schema for questions is documented in a later section.

Additional fields for projects

Question Fields

The questions of projects are displayed in a layout of tabs and groups within each tab pane. Each question that shows up on a project page should specify its tab and group name (which are also the display strings):

questions:
- id: howto_ssp
 title: "SSP 101: What's a System Security Plan"
 type: module
 module-id: howto_ssp
 tab: How To
 group: Start Here
 icon: ssp.png

icon specifies a static asset (in the assets directory) to use as an icon for the question. If the question’s type is module and it is answered and the answer is a Task that has a top-level icon field, then the answer’s icon is used instead.

Instead of tab and group, placement: action-buttons can be used instead to show the question in an action bar above the tabs, rather than in tabs.

Output Document Fields

Output documents of a project module that have an id field are used in the following ways:

	They are displayed in the Related Controls page for the project. Add a title attribute to set the heading text above the document’s content.

	They can be accessed from higher-level apps into which this app has been added. In a higher-level app, access the rendered HTML value of the output document as {{question.output_documents.document_id}}.

When display: top is set on an output document, it is rendered above the Your Answers section.

Test Answers

Projects can provide sets of exemplar answers for use in test scripts. e.g.:

tests:
 test1: # <-- test suite ID
 description: "Sample data."
 answers:
 q1:
 answers: # <-- answers to sub-task's questions
 q1: desktop
 q2: My Secure Tool

Documents

Documents occur as introduction and output documents of Modules, and a restricted form of documents also occurs in Question prompts (see Questions below). A document appearing in the output documents list is given as:

output:
 - id: mydoc
 title: Document 1
 format: markdown
 template: |
 Hello!

The id and title fields are generally optional and are used for output documents only. An id is required to make the document downloadable. The fields also have special uses in projects (see above). The format field is described below.

The document can also be stored in a separate file by replacing the document data in the module YAML file with a filename and placing the document properties and template in the named file, as in:

module.yaml
output:
 - mydoc.md

mydoc.md
id: mydoc
title: Document 1
format: markdown
...
Hello!

When using a separate file, the document properties (id, title, and format) are given in a YAML block at the top of the file. A line containing just three dots signifies the end of the YAML block, separating it from the document template. The document template follows.

Document Format

The introduction and output documents of Modules allow a format to be specified. The document formats are:

	markdown — The document is entered in CommonMark [http://commonmark.org/] (quick guide [http://commonmark.org/help/]) in the specification file, but it will be rendered into a richly formatted presentation on screen.

	html — The document is given in raw HTML, but it will be rendered on screen.

	text — The document is given in plain text, and it will display as preformatted (fixed-width) text on screen.

	json, yaml — Experimental.

Additional Markdown Notes

Documents specified in markdown format are rendered according to the CommonMark 0.25 specification [http://commonmark.org/].

Note that for some things like tables, it is necessary to insert raw HTML right into the document, which is acceptable CommonMark. To create a table:

<table><thead><th>

Col 1

</th>
<th>

Col 2

</th>
</thead>
<tbody><tr><td>

Some [commonmark](http://www.google.com) within the cell.

</td>
<td>

More *content.*

</td></tr></tbody></table>

Some of the newlines are necessary to get CommonMark to go out of raw HTML mode and back into parsing CommonMark.

Document Templating

All document formats are evaluated as Jinja2 templates [http://jinja.pocoo.org/docs/dev/templates/]. That means within your document you can embed special tags that are replaced prior to the document being displayed to the user:

	{{ question_id }} will be replaced with the user’s answer to the question whose id is question_id. For choice-type questions, the value is replaced by the choice key. Use {{ question_id.text }} to get display text. See the question types documentation below for details.

	{% if question_id == 'value' %}....{% endif %} is a conditional block. The contents inside the block (....) will be included in the output if the condition is true. In this example, the contents inside the block will be included in the output if the user’s answer to question_id is value.

Output documents and question prompts have access to the user’s answers to questions in question variables. (The introduction document does not have access to the user’s answers because questions have not yet been answered.)

The following information is also available within the output template for each question as of version v0.8.6:

	{{ question_id.not_yet_answered }} Question has not yet been answered.

	{{ question_id.answered }}Question has an answer either by user or was imputed, but not imputed null or answered null.

	{{ question_id.imputed }} Question considered “answered” but no TaskAnswerHistory record exists in the database for question meaning a user didn’t provide the answer.

	{{ question_id.skipped }} Question has a null answer either because imputed null or the user skipped it.

	{{ question_id.skipped_by_user }} Question has a null answer because used a skip button (e.g., question wasn’t imputed null).

	{{ question_id.skipped_reason }} Question’s indicated reason for skipping (e.g. “I don’t know” or “It doesn’t apply”)

	{{ question_id.unsure }} If question was answered by a user, its unsure flag. (NOTE: Purpose of this flag was to allow users to indicate uncertainty in the answer. Due to usability issues however, this feature is currently hidden.)

	{{ question_id.date_answered }} Question answered date.

	{{ question_id.reviewed_state }} Question reviewed value.

All documents also have access to the project title as {{project}}.

Project Documents

In addition to the output documents described above, a project module may also have a snippet that defines how a project appears in the project listing page:

snippet:
 format: markdown
 template: |
 Project {{name}}

Module Assets

Modules often make use of assets outside of the YAML file.

Static Assets

Static assets such as images can be referenced in module content (introductions, question prompts, and output documents). These assets are exposed by the Q web server in its static path. Place static assets in an assets subdirectory where the module is. When the asset is referenced in a Markdown document template, its path will be rewritten to be its public (virtual) path on the web server.

For example, to include an image in a module introduction add the image in the Markdown template:

module.yaml

...
format: markdown
template: |

...

Place the module and image files at the path:

module.yaml
assets/my_image.png

Private Assets

Private assets are other files that are stored with a module but are not exposed by the web server. The directory provides a place to store files for internal use during module development.

Place private assets in a private-assets subdirectory next to the module YAML file.

Questions

Questions have the following required fields:

- id: q1
 title: Your Favorite Animal
 prompt: What's your favorite animal?
 type: text

The question id is used to refer to this Question in other questions and in the output documents.

The title is used to describe the Question in places where a long-form prompt would not be appropriate.

The prompt is the text the user is prompted with when presented with the question. The prompt is rendered like other Module documents but it is always specified in markdown format (see Documents). The first line (paragraph) of the prompt is shown in larger, bold type.

A question may have other optional fields that provide the user with other information, such as:

examples:
- example: |
 First example.
- example: |
 Second example.
reference_text: See NIST SP 800-171 page 102.

Like the prompt, each entry inside examples and the reference_text are Markdown templates.

Removing a question, changing a question type, and other changes as noted below are incompatible changes (see Updating Modules).

Question Types

text

This type asks the user for a single line of free-form text. The text cannot be empty.

A placeholder can be specified which places ghosted “placeholder” text inside the form field when the user has not yet entered anything. A default value can be specified, instead, which fills in the field with a value that the user can edit (or not) before submitting the answer. The placeholder and default fields are rendered like other Module documents — just like the prompt.

help text can be specified which provides an additional prompt smaller and below the field input.

Example:

- id: q1
 title: Your Favorite Animal
 prompt: What's your favorite animal?
 type: text
 placeholder: enter a type of animal
 help: Examples: dog, cat, turtle, lion

In document templates and impute conditions, the value of text questions is simply the text the user entered.

password

This type asks the user for a password. It is the same as the text question type, except that a password input field is used to mask the input. help can be specified. placeholder and default are not allowed.

email-address

This type asks the user for an email address. It is the same as the text question type, except that the value entered must be a valid email address. placeholder, default, and help can be specified.

url

This type asks the user for a web address (a URL). It is the same as the text question type, except that the value entered must be a valid web address. placeholder, default, and help can be specified. The web address is not checked for existence — only the form (syntax) of the address is checked.

longtext

This type asks the user for free-form text using a large rich text input area that allows for multiple lines of text and some simple formatting. The text cannot be empty.

A default value can be specified, which fills in the field with a value that the user can edit (or not) before submitting the answer. The field is rendered like other Module documents — just like the prompt. It is given in Markdown.

help text can be specified which provides an additional prompt smaller and below the field input.

In document templates and impute conditions, the value of longtext questions is the text the user entered, as a string, with rich formatted represented in CommonMark. In document templates, the text is automatically converted back to rich formatting.

date

This type asks the user for a date.

help text can be specified which provides an additional prompt smaller and below the field input.

In document templates and impute conditions, the value of date questions is a text string in YYYY-MM-DD format.

choice

This type asks the user to choose one of several options. The options are given as:

choices:
 - key: pet
 text: common pet
 help: Is this animal a common pet?
 - key: wild
 text: wild animal
 help: Is this animal an undomesticated wild animal?

The user must select exactly one choice.

The help text is optional. It is displayed smaller and below each choice. (Unlike some other question types, there is no help field on the question as a whole.)

In document templates and impute conditions, the value of choice questions is the key of the choice selected by the user. Use questionid.text to access the display text for the choice.

Removing a choice is an incompatible change (see Updating Modules).

yesno

This type is the same as choice but with built-in choices for yes and no. It is the same as a choice question type with these choices:

choices:
 - key: yes
 text: Yes
 - key: no
 text: No

The user must choose either yes or no.

multiple-choice

The multiple-choice question type is similar to the choice question type except that:

	The user can select multiple choices.

	In document templates and impute conditions, the value of multiple-choice questions is a list of the keys of the choices selected by the user. When used bare, this renders as a comma-separated list of keys. One can use the ``|length` filter <http://jinja.pocoo.org/docs/dev/templates/#length>`_ and {% for ... in ... %}... {% endfor %} loops to access the individual choices the user selected. Use questionid.text to render a comma-separated list of the display text of the selected choices.

	min and max may be specified. If min is specified, it must be greater than or equal to zero and requires that the user choose at least that many choices. If max is specified, it must be greater than or equal to one (and if min is specified, it must be at least min) and requires that the user choose at most that number of choices.

Increasing the min or decreasing the max are incompatible changes (see Updating Modules).

integer

This question type asks for a numeric, integer input.

If min and max are set, then the value is restricted to that range. If min is omitted, then negative numbers are allowed!

As with the text question types, placeholder and help text can also be specified.

In document templates and impute conditions, the value of integer questions is the numeric value entered by the user.

real

This question type asks for a numeric input, allowing for real (floating-point) numbers.

If min and max are set, then the value is restricted to that range. If min is omitted, then negative numbers are allowed!

As with the text question types, placeholder and help text can also be specified and in document templates and impute conditions the value of these questions is the numeric value entered by the user.
.

file

This question type asks the user to upload a file.

help text can also be specified, as in the text question types.

By default, any type of file is permitted to be uploaded. If the optional file-type field is set, the uploaded file is validated to be of a particular type. Supported values for the file-type field are:

	image: Ensures the file is an image. The uploaded file is converted to PNG format internally.

If file-type is image, then some image transformation can be run, e.g.:

- id: logo
 title: Logo
 prompt: Upload a logo.
 type: file
 file-type: image
 image:
 max-size:
 width: 60
 height: 60

If image->max-size is given, then the image will be resized prior to being saved internally so that its width and height do not exceed the given dimensions.

In document templates and impute conditions, the value of these questions is a Python dict (JSON object) containing url (a download URL) and size (in bytes) fields.

module, module-set

These question type prompt the user to select another completed module as the answer to the question. The module-id field specifies the ID of another module specification. The module question type allows for a single other module to answer the question. The module-set question type allows for zero or more other modules to answer the question.

The module-id field specifies a module ID as it occurs in the id field of another YAML file in the same application.

Example

Here’s an example of the module question type:

- id: evidence
 title: Evidence
 type: module
 module-id: evidence
 prompt: |
 Provide evidence of your properly configured firewall, if possible.
 impute:
 - condition: not(have_other_dmz == 'ad_hoc_dmz')
 value: ~

App protocols

Instead of using module-id, a protocol can be specified instead. A protocol is a globally unique identifier that apps in the Compliance Store use to indicate that their questions and output documents meet a certain criteria (i.e. implement the protocol). When a user attempts to answer a module or module-set question that uses protocol instead of module-id, instead of starting a particular named module, the user instead can start any app from the Compliance Store that implements the protocol.

For example:

- id: evidence
 title: Evidence
 type: module
 protocol: govready.com/apps/compliance/2017/nist-sp-800-171-r1-ssp
 prompt: |
 Provide evidence of your properly configured firewall, if possible.

When a user answers this question, they will be redirected to the Compliance Store but will be offered only apps that implement the protocol govready.com/apps/compliance/2017/nist-sp-800-171-r1-ssp.

An app implements a protocol by having a protocol: field at the top level of the app’s YAML specification file with the same value. For instance, the following app would be offered in the Compliance Store for this example question:

id: app
title: My App
type: project
protocol: govready.com/apps/compliance/2017/nist-sp-800-171-r1-ssp

Both protocol fields can be either a single string or a list of strings. When the question protocol value is a list, then only apps which implement all of the listed protocols will be offered.

Question type details

Changing the module-id or protocol is considered an incompatible change (see Updating Modules), and if the referenced Module’s specification is changed on disk in an incompatible way with existing user answers, the Module in which the question occurs is also considered to have an incompatible change. Thus an incompatible change in a module triggers an incompatible change in any other Module that refers to it (and so on recursively).

In document templates and impute conditions, the value of module questions is a dictionary of the answers to that module. For example, if q5 is the ID of a question whose type is module, then {{q5.q1}} will provide the answer to q1 within the module the user selected that answers q5.

interstitial

An interstitial question is not really a question at all! The prompt contains template content, as with other questions, but it is typically longer content with deeper explanatory text. The user is not asked to enter any information.

In document templates and impute conditions, the value of interstitial questions is always a null value.

raw

This type is meant for questions that are always imputed (i.e. that are never presented to the user) and where the answer value can be any JSON-serializable Python data structure, as given by the impute value (see Imputing Answers below).

This question type should be avoided if one of the other question types specifies a more narrow data type. For instance, if the imputed value is always a string, the text or longtext question types should be used instead.

Imputing Answers

The answer to one question may provide the answer to another. In such cases, the latter question is said to have an imputed value and the user is not asked to answer the question. To impute a value, specify on the question whose value is being imputed:

impute:
 - condition: q1 == 'no'
 value: don't know

This example says that if the answer to q1 is no, then the answer to this question is don't know.

The condition is a Jinja2 expression [http://jinja.pocoo.org/docs/dev/templates/#expressions]. Any question can be referred to in the expression (by its id). Questions are tested on their internal values. For choice and multiple-choice questions, their values are their keys, not their label text, and multiple-choice questions are lists of keys. If condition is omitted, the imputed value is always taken (i.e. the condition is implicitly met).

The value provided must be a valid value for the question type it is a part of. For choice questions, the value must be a choice key, not the label text. For multiple-choice questions, the value must be a list of keys.

Multiple condition/value blocks can be provided. They are evaluated in order, with the first matching condition taking precedence.

impute:
 - condition: q1 == 'no'
 value: I don't know.
 - condition: q1 == 'yes'
 value: I do know.

The value field can be evaluated as a Jinja2 expression [http://jinja.pocoo.org/docs/dev/templates/#expressions], just like the condition, if value-mode is set to expression. This can be used to pull forward the answers of previous questions:

impute:
 - condition: q1 == 'same-as-q0'
 value: q0
 value-mode: expression

value-mode can also be template to evaluate the value as a Jinja2 template, which will yield a text value.

In both conditions and expression-type values, as well as in documents, the variables you can use are:

	ids of questions in the module

	question_id.subquestion_id to access questions within the tasks that are assigned as answers to module-type questions

	project, which gives the project name

	project.question_id, project.question_id.subquestion_id, etc. to access questions within the project

	organization, which gives the organization name

We also have a function to retrieve the URL of a module’s static assets, e.g.:

<script src="{{static_asset_path_for('myscript.js')}}"></script>

Question Order

The order in which Questions are asked is determined through an algorithm. The algorithm determines which questions need to be asked before other questions and which need to be asked in order to generate the output documents.

The only Questions that are asked of the user are those that are mentioned in any of the output templates or other Questions that required to be asked before those mentioned Questions can be answered.

If a Question mentions another question in its prompt text or impute conditions, the other question must be answered first. A Question can also list other Questions that should be answered first as:

ask-first:
 - q1
 - q2

Updating Modules

When a Module file specification is changed, the change is considered “compatible” or “incompatible” with existing user answers.

Many changes are “compatible”: Changing the introduction or output documents, question prompts, and adding new questions and choices are all compatible changes. These changes can be made “live” on any existing user answers.

Other changes are “incompatible”: Removing a choice is an incompatible change because a user may have already chosen it. Removing a question is incompatible because it would result in a loss of user data.

When there is an incompatible change in a Module specification, a new iteration of the Module will be stored in the program database but existing user answers will continue to be tied to the previous iteration of the Module specification.

 Automation API

Automation API

GovReady Q Compliance Apps can be updated with information gathered from live systems via the GovReady Q API. The benefit of this capability is that the documentation produced by GovReady Compliance Apps, such as System Security Plans (SSPs), can be assembled and updated with actual system data in an automated way.

Overview of the GovReady Q API

The GovReady Q API provides read and write access to the information stored in GovReady Q’s question-and-answer data model. It is a RESTful API using HTTP GET and POST requests, API keys that are issued per user, and JSON for request and response data.

Each GovReady Compliance App provides a separate API, and each app’s API is composed of fields for the same information the app would ask an end-user using the Q website in a web browser. The app’s definition of questions to ask the end user (see Modules, Questions, and Documents) also define the data model of the API.

As an example, the screenshot below shows a demonstration of a macOS File Server compliance app. The app asks questions about the hostname of the server and the use of security groups.

[image: macOS File Server Compliance App]
The answers to these questions can be both read from Q and written to Q using a JSON data structure:

{
 "schema": "GovReady Q Project API 1.0",
 "project": {
 "file_server": {
 "hostname": "twiggie",

 "login_message": "/etc/issue:\n\n```Ubuntu 16.04.3 LTS \\n \\l```",
 "login_message.html": "<p>/etc/issue:</p>\n<p><code>Ubuntu 16.04.3 LTS
 \\n \\l</code></p>",

 "using_security_groups": "yes",
 "using_security_groups.text": "Yes"

 "security_groups_description": "There are 17 UNIX groups: `adm` (2 users:
 `syslog`, `user`), `audio` (2 users: `speech-dispatcher`, `pulse`), ...",
 "security_groups_description.html": "<p>There are 17 UNIX groups: <code>
 adm</code> (2 users: <code>syslog</code>, <code>user</code>), ..."
 }
 }
}

The second question, shown below, is a yes-no question. In the web browser this question appears as a radio select question with Yes and No choices. In the JSON data structure, shown above, it is encoded as the JSON strings "yes" or "no".

[image: macOS File Server Compliance App Question]
Each compliance app that has been started in GovReady Q and added to a project folder provides an API Docs page with samples and data schema documentation:

[image: API Docs Page]

Using the Compliance API

To use a compliance app API, an app must already be started in GovReady Q by adding it to a project folder and its modules must be started (but need not be completed) for them to be accessible from the API.

API keys

Every call to the API requires an API key. Each user has three API keys listed on their API Keys page, which can be found in the user drop-down menu on Q: a read-only API key, a read-write API key, and a write-only API key:

	The read-only API key gives external tools the ability to see all data values that the associated user can see on Q, but the API key cannot be used to change any data values.

	The read-write API key gives external tools the ability to see and make changes to anything the associated user can see and make changes to on Q.

	The write-only API key gives external tools the ability to make changes to anything the associated user can make changes to on Q but does not include the ability to see any data values stored in Q. The write-only key is useful in situations where the external tool needs to be able to upload data but does not need to read existing data values.

Getting data from the app using the GET API

Project data can be read from the API using an HTTP GET request to a URL of the following pattern:

{site base URL}/api/v1/projects/{project id}/answers

The complete URL can be found on the API Docs page for a compliance app that has been started and added to a project folder.

An API key must be passed in the HTTP Authorization header. You can get your API key from the API Keys page, which is found in the site header menu in the user drop-down.

The API response is a JSON data structure similar to the example above. The schema of the response object is documented on the app’s API Docs page. Further information can also be found below.

If you are using an operating system with a command line and the curl tool, you can try out the API by running:

curl --header "Authorization: {your-api-key}" \
 {site base URL}/api/v1/projects/{project id}/answers

Updating data using a POST request with form data

There are two types of POST requests that can be used to update app data. In the first type, described in this section, data values are provided as key-value pairs using the regular web browser form submission method. (In the second form, described below, answers are provided using a JSON data structure that is formatted the same as the JSON data structure returned by a GET request, which may be more appropriate when submitting non-textual and non-binary content.)

In each of the key-value pairs submitted in the POST request, the key is a dotted-path question ID. The key always begins with project. and is followed by the property names on the path to the question being updated, according to the JSON data structure, with property names separated by the . character.

The value of each key-value pair is an answer submitted either as plain text or, for file-type questions, as a binary file. If submitted as plain text and the question expects non-text data, such as a number, the value will be converted. When uploading a binary file, the multipart/form-data [https://tools.ietf.org/html/rfc2388] content type must be used for the POST request.

As with the GET API, an API key must be passed in the HTTP Authorization header. An API key with write permission must be used. You can get an API key from the API keys page on your Q site.

If you are using an operating system with a command line and the curl tool, you can try out the API by running:

curl \
 --header "Authorization: <i>your-api-key</i>" \
 -F project.question.subquestion1=datavalue \
 -F project.question.subquestion2=datavalue \
 {site base URL}/api/v1/projects/{project id}/answers

For a file upload, use -F @filename.ext. curl’s -d option can be used in place of -F if none of the fields are file uploads.

Updating data using a POST request with JSON

Use a POST request instead a GET request to the same URL to update data stored in the app. Data values to save in the app are included in the request body as JSON in the same format as returned by the GET request.

The POST request body always includes:

{
 "schema": "GovReady Q Project API 1.0",
 "project": {
 ...
 }
}

Answer data is placed inside the project field.

As with the GET API, an API key must be passed in the HTTP Authorization header. An API key with write permission must be used. You can get your API key from the API Keys page, which is found in the site header menu in the user drop-down.

If you are using an operating system with a command line and the curl tool, you can try out the API by placing the JSON request data in a file named data.json and then running:

curl --header "Authorization: {your-api-key}" \
 -XPOST --data @data.json --header "Content-Type: application/json" \
 {site base URL}/api/v1/projects/{project id}/answers

API Data Schema

Each compliance app documents its data schema on its API Docs page, which can be found inside the compliance app after it has been started and added to a project folder.

Each question defined by the app — which it would ask an end-user when in a web browser — is exposed as a field in the JSON data structure. The field types are:

	Text, password, email-address, and URL fields: Encoded as a JSON string. Email-address fields must contain valid email addresses. URL fields must contain valid URLs.

	Long text fields, which hold multi-paragraph text: Encoded as a JSON string with formatting expressed in CommonMark [http://commonmark.org/] (i.e. Markdown).

	Date fields: Encoded as a JSON string in YYYY-MM-DD format.

	Single-choice and yes-no fields: Encoded as a JSON string holding a programmatic identifier for the selected choice. Yes-no fields use the identifiers yes and no.

	Multiple-choice fields: Encoded as a JSON array of strings, where each string is a programmatic identifier for a selected choice.

	Integer and real number fields: Encoded as a JSON number. Integer fields must contain integer values.

	File fields: Encoded as a JSON object containing the properties url (a link to download the file content), type (the MIME type), and size (the size of the file in bytes).

	“Module” questions create recursive structures and are encoded as JSON objects. “Module-set” questions are encoded as JSON arrays of JSON objects.

All fields can also hold null, which indicates the question has been explicitly “skipped.” If a question is unanswered, it does not appear in the API.

Single-choice, multiple-choice, and yes-no fields also appear in human-readable form as a second read-only field that uses a .text suffix in the field’s name. Long text fields have an HTML display form, in which the CommonMark is pre-rendered, in a parallel field with a .html suffix in the field’s name. These fields cannot be used in the POST API.

More information about Q’s data types can be found in Modules, Questions, and Documents.

 Data Design Guide

Data Design Guide

The documents in this section describe GovReady-Q’s database design.

	Users, Organizations, Projects, Folders, and Invitations

	Compliance Apps, Modules, Questions, Tasks, and Answers
	Compliance Apps (Questions, Business Logic, and Templates)

	User Answers (Tasks and Answers)

	Imputed Answers and Output Documents
	Imputed Answers

	Output Documents

	Database Query Examples
	Example: Find all approved answers to a particular question across users and tasks
	Find the AppVersions

	Find the ModuleQuestions

	Find the history of answers

	Find the current answer to each question

	Filter on approved answers

	Discussions

	Generating Detailed Data Models

 Users, Organizations, Projects, Folders, and Invitations

Users, Organizations, Projects, Folders, and Invitations

The diagram below provides a summary representation of GovReady-Q’s Django siteapp data model, which handles users, organizations, projects and folders, and invitations.

[image: Siteapp data model (not all tables represented)]
The siteapp data model represents users who have membership in different projects. Users must be invited to projects. Projects belong to organizations.

Access control is based on organization and projects. Information cannot be shared across organizations and only limited information can be shared across projects within an organization.

 Compliance Apps, Modules, Questions, Tasks, and Answers

Compliance Apps, Modules, Questions, Tasks, and Answers

GovReady-Q is a governance, risk, and compliance platform for creating automated compliance processes ranging from gathering information from persons and computers to generating compliance artifacts.

Information gathering is at the heart of GovReady-Q’s guidedmodules data model, which handles compliance apps, modules, questions, tasks, and answers. Eight database tables make up the guidedmodules data model. The complete data model spans three categories:

	Compliance apps, which are reusable packages of questions, business logic, and document templates, are defined by the database tables AppSource, AppVersion, Module, ModuleQuestion, and ModuleAsset. Many compliance apps, and different versions of the same compliance app, can be in use simultaneously.

	Information submitted by end-users to answer compliance app questions, as well as information submitted through the GovReady-Q API, is stored in the database tables Task, TaskAnswer, and TaskAnswerHistory.

	Imputed answers and documents generated by the business logic stored in compliance apps, which are computed on-the-fly.

The tables are described is additional detail below and their relationships are summarized in the following diagram:

[image: Guidedmodules data model (not all tables represented)]

 Discussions

Discussions

The diagram below provides a summary representation of GovReady-Q’s Django discussion data model that handles discussions, comments, and invitations.

[image: Discussion data model (not all tables represented)]
A single discussion can be instantiated and associated to any task (task ~= “question”). A discussion can have multiple comments. Comments can have multiple attachments.

 Generating Detailed Data Models

Generating Detailed Data Models

Below are instructions to use django-extensions to generate detailed data models.

Install django-extensions
http://django-extensions.readthedocs.io/en/latest/installation_instructions.html
apt install graphviz-dev
pip3 install django-extensions pygraphviz

Add django-extensions INSTALLED_APPS in siteapp > settings.py
INSTALLED_APPS = (
...
'django_extensions',
)

examples:
python3 manage.py graph_models -a -g -o my_project_visualized.png
python3 manage.py graph_models -a -o my_project.png
python3 manage.py graph_models -a > my_project.dot
for a single django app:
python3 manage.py graph_models app1 -o my_project_app1.png

 Testing

Testing

Running Tests

GovReady-Q’s unit tests and integration tests are currently combined. Our integration tests uses Selenium to simulate user interactions with the interface.

To run the integration tests, you’ll also need to install chromedriver:

sudo apt-get install chromium-chromedriver (on Ubuntu)
brew cask install chromedriver (on Mac)

Navigate within your terminal to GovReady-Q top level directory.

Then run the test suite with:

./manage.py test

NOTE: Depending on your Python3 configuration, you may need to run:

python3 manage.py test

To selectively run tests from individual modules:

test rendering of guided modules
./manage.py test guidedmodules

test general siteapp logic
./manage.py test siteapp

test discussion functionality
./manage.py test discussion

Or to selectively run tests from individual classes or methods:

run tests from individual test class
./manage.py test siteapp.tests.GeneralTests

run tests from individual test method
./manage.py test siteapp.tests.GeneralTests.test_login

Test Coverage Report

To produce a code coverage report, run the tests with coverage:

coverage run --source='.' --branch manage.py test
coverage report

Code Scanning and Analysis

GovReady-Q is a Python web application written on top of the Django framework and uses a variety of industry standard Javascript libraries. See Software Requirements for high level view and the requirement*.txt files for detailed view.

GovReady-Q’s Python application code is found in the *.py files in the following directories and their subdirectories:

	discussion/

	guidedmodules/

	siteapp/

The small manage.py script in the root directory is part of the Django framework. We use bash utilities scripts (*.sh) to automate installation and maintenance tasks of the code base. Python scripts in .circleci directory are used within our Continuous Implementation pipeline.

Simple Static Code Analysis

To run a static code analysis with our typical settings:

bandit -s B101,B110,B603 -r discussion/ guidedmodules/ siteapp/

We use -s on the command-line and nosec in limited places in the source code to disable some checks that are determined after review to be false positives.

Detailed Static and Dynamic Code Analysis

We periodically scan GovReady-Q’s code base with more traditional/powerful tools and remediate critical and high vulnerabilities.

To scan GovReady-Q’s codebase, you will need to configure your tools to scan Python code. You are looking for the *.py files across the code base.

To scan or do other penetration tests on the code base, we recommend deploying GovReady-Q with Docker.

Dependency Management and Vulnerability Testing

Our requirements.txt file is designed to work with pip install --require-hashes, which ensures that every installed dependency matches a hash stored in this repository. The option requires that every dependency (including dependencies of dependencies) be listed, pinned to a version number, and paired with a hash. We therefore don’t manually edit requirements.txt. Instead, we place our immediate dependencies in requirements.in and run requirements_txt_updater.sh (which calls pip-tools’s pip-compile command) to update the requirements.txt file for production.

Continuous integration is set up with CircleCI at https://circleci.com/gh/GovReady/govready-q and performs unit tests, integration tests, and security checks on our dependencies.

	CI runs requirements_txt_checker.sh which ensures requirements.txt is in sync with requirements.in. This script is set up to run against any similar files as well, such as MySQL-specific requirements_mysql.* files.

	CI checks that there are no known vulnerabilities in the dependencies using pyup.io [https://pyup.io/].

	CI checks that all packages are up to date with upstream sources (unless the package and its latest upstream version are listed in requirements_txt_checker_ignoreupdates.txt).

Populating sample data for manual testing and verification

In some cases, you may wish to perform manual testing on an instance of GovReady-Q which has been populated with data. Several Django commands have been added to facilitate this, in the testmocking module. Generated data is intended to be structurally similar to what might be found in a real GovReady-Q instance, but the actual content of the data will often appear machine-generated.

If you wish to get up and running quickly, the following command is recommended:

python3 manage.py add_data --non-interactive

The add_data command will fill in a recommended set of sample data.

 Version 0.9.0

Version 0.9.0

What’s New in 0.9.0

Release 0.9.0 (coming Autumn 2019) is a minor release improving
the user experience and performance.

	Faster loading and launching of Assessments/questionnaires

	Simplified install with no subdomains to worry about

	Replaces subdomain multi-tenancy with simplified “Portfolios” model

	Improved authoring screens

	Helpful new start page

	Adds and updates portfolio level permissions

Release 0.9.0 removes multi-tenancy and serves all pages from the same domain. In the earlier multi-tenancy versions, requests to GovReady-Q came in on subdomains: the subdomain determined which organization to associate with the request, and individuals had to re-login across subdomains. Little value was being realized by actual users for the subdomain-based multi-tenancy. Removing subdomain-based multi-tenancy reduces technical debt simplifies deployment.

This release’s compliance apps catalog now reads from the database rather than constantly rescanning remote repositories and the file system. The app catalog cache is removed since the page loads much faster. Release 0.9.0 begins to replace the “compliance app” terminology with the plain language “projects” and “assessment” terminology in end user pages.

This release also introduces a “Portfolios” feature to organize and manage related projects.

For a complete list of changes see the 0.9.0.dev branch CHANGELOG [https://github.com/GovReady/govready-q/blob/0.9.0.dev/CHANGELOG.md].

Release 0.9.0 progress can be found on the 0.9.0.dev and 0.9.0.rc-xxx branches.

Screenshots

Sign-in Page

	0.8.6 (Old Version)

	0.9.0 (New Version)

	[image: version 0.8.6 sign in page]

	[image: version 0.9.0 sign in page]

Projects List Page

	0.8.6 (Old Version)

	0.9.0 (New Version)

	[image: version 0.8.6 projects page]

	[image: version 0.9.0 projects page]

Portfolios (New in 0.9.0)

	0.8.6 (Old Version)

	0.9.0 (New Version)

	Feature did not exist

	[image: version 0.8.6 portfolio create page]

	Feature did not exist

	[image: version 0.9.0 portfolio detail page]

Module View

	0.8.6 (Old Version)

	0.9.0 (New Version)

	[image: version 0.8.6 module page]

	[image: version 0.9.0 module page]

Question Page

	0.8.6 (Old Version)

	0.9.0 (New Version)

	[image: version 0.8.6 question page]

	[image: version 0.9.0 question page]

Release Date

The target release date for 0.9.0 is Autumn 2019.

Upgrading to 0.9.0 from 0.8.x

Backup your database before upgrading to 0.9.0. Release 0.9.0 performs database changes that makes rolling back difficult.

See Migration Guide for GovReady-Q (0.8.6 to 0.9.0).

Installing 0.9.0

Release 0.9.0 simplifies the installation of GovReady-Q by removing the need to manage subdomain-based multi-tenancy.

Three example assessments are preloaded during the install of 0.9.0 to demonstrate the experience of using GovReady-Q.

The installation of assessments (aka “Compliance Apps”) requires an extra step in 0.9.0 but greatly improves user experience.

Click one of the tab belows to see quickstart for indicated platform.

Docker

Installing with Docker

Make sure you first install Docker (https://docs.docker.com/engine/installation/) and, if appropriate, grant non-root users access to run Docker containers (https://docs.docker.com/engine/installation/linux/linux-postinstall/#manage-docker-as-a-non-root-user) (or else use sudo when invoking Docker below).

Start

Create a local directory for authoring Q assessment files
mkdir -p /path/to/govready-q-files
mkdir -p /codedata/code/govready-q-files

Run the docker container in detached mode
docker container run --detach --name govready-q -p 127.0.0.1:8000:8000 \
-e HOST=localhost -e PORT=8000 -e HTTPS=false -e DBURL= -e DEBUG=true \
govready/govready-q-0.9.0.dev

Create admin account and organization data if setting up a new database
docker container exec -it govready-q first_run

Stop, start container (when needed)
docker container stop govready-q
docker container start govready-q

View logs - useful if site does not appear
docker container logs govready-q

To destroy the container and all user data entered into Q
docker container rm -f govready-q

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

Dockerized GovReady-Q supports additional options. Below is a more complete example

parameters available.

Run the docker container in detached mode
docker container run --detach --name govready-q -p 127.0.0.1:8000:8000 \
-e HOST=localhost -e PORT=8000 -e HTTPS=false -e DBURL= -e DEBUG=true \
-e EMAIL_HOST= -e EMAIL_PORT= -e EMAIL_USER= -e EMAIL_PW= -e EMAIL_DOMAIN= \
--mount type=bind,source="$(pwd)",target=/mnt/q-files-host \
govready/govready-q-0.9.0.dev

Alternatively, we offer a shell script that helps launch GovReady-Q.
Do the following to download the shell script and launch GovReady-Q docker container.

cd /path/to/working/dir

Get the docker_container_run.sh shell script
wget https://raw.githubusercontent.com/GovReady/govready-q/master/deployment/docker/docker_container_run.sh

Make it executable
chmod +x docker_container_run.sh

./docker_container_run.sh --name govready-q --relaunch --debug -v --appsdevdir /codedata/code/govready-q-files --image govready/govready-q-0.9.0.dev

Logs for Debugging

The container’s console shows the output of container’s start-up commands including database migrations and process startup. The container’s console log can be accessed with

docker container logs govready-q-0.9.0

GovReady-Q application logs can be found in /var/log within the container to track status and assist with debugging. These files contain access logs and other program output.

	/var/log/application-stderr.log - GovReady-Q application standard error

	/var/log/application-stdout.log - GovReady-Q application standard out

	/var/log/notificationemails-stderr.log - GovReady-Q email notifications standard error

	/var/log/notificationemails-stdout.log - GovReady-Q email notifications standard error

	/var/log/supervisord.log - Supervisor daemon

Debugging “Internal Server Error” Messages

A special management command can be used to see the application log files to debug unhandled “Internal Server Error” (HTTP code 500) messages displayed in the browser to end users

docker container exec govready-q-0.9.0 tail_logs
Replace "govready-q-0.9.0" with name of your container or use container id

tail_logs takes the same arguments as Unix tail. For instance, add -n 1000 to see the most recent 1,000 log lines, or add -f to continue to output the logs as the log files grow.

most recent 200 lines of logs
docker container exec govready-q-0.9.0 tail_logs -n 200

real-time display of logs
docker container exec govready-q-0.9.0 tail_logs -f

The log files can also be accessed by mounting /var/log with a Docker bind-mount or as a volume (and that’s the only way to see the logs if docker container exec cannot be used in your environment).

macOS

Installing on macOS

GovReady-Q calls requires Python 3.6 or higher to run and several Unix packages to provide full functionality. Install the Homebrew package manager (https://brew.sh) to easily install Unix packages on macOS. Homebrew will install all packages in your userspace and not change native macOS Python or other libraries.

install Homebrew package manager
/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

Now install Python3 and the required Unix packages.

install dependencies using brew
brew install python3

install other packages:
brew install unzip graphviz pandoc selenium-server-standalone magic libmagic
brew cask install wkhtmltopdf

Installing GovReady-Q

Clone GovReady-Q source code and install.

clone GovReady-Q
git clone https://github.com/govready/govready-q
cd govready-q

checkout the 0.9.0.dev (or desired 0.9.0.rc-0xx branch)
git checkout 0.9.0.dev

install Python 3 packages
pip3 install --user -r requirements.txt

install Bootstrap and other vendor resources locally
./fetch-vendor-resources.sh

Run the final setup commands to initialize a local Sqlite3 database in local/db.sqlite to make sure everything is OK so far:

run database migrations (sqlite lite database used by default)
python3 manage.py migrate

load a few critical modules
python3 manage.py load_modules

create superuser with initial account if setting up a new database
skip if you pass environment variables to connect to a persistent database
python3 manage.py first_run

Start GovReady-Q

run the server
python3 manage.py runserver

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

RHEL/CentOS 7

Installing on RHEL/CentOS 7

Instructions applicable RHEL 7, CentOS 7 and Amazon Linux 2.

GovReady-Q calls requires Python 3.6 or higher to run and several Linux packages to provide full functionality.

if necessary, enable EPEL and IUS repositories
rpm -i https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm https://rhel7.iuscommunity.org/ius-release.rpm

install dependencies
sudo yum install \
unzip python36-pip python36-devel \
graphviz \
pandoc xorg-x11-server-Xvfb wkhtmltopdf \

optional install gcc to build the uWSGI Python package.
sudo yum install gcc

optional insall of postgress and/or mysql
sudo yum install postgresql mysql-devel

GovReady-Q calls out to git to fetch apps from git repositories, but that requires git version 2 or later because of the use of the GIT_SSH_COMMAND environment variable. RHEL stock git is version 1. Switch it to version 2+ by using the IUS package:

if necessary, remove any git currently installed
yum remove git
install git2u
yum install git2u

Installing GovReady-Q

Clone GovReady-Q source code and install.

clone GovReady-Q
git clone https://github.com/govready/govready-q
cd govready-q

checkout the 0.9.0.dev (or desired 0.9.0.rc-0xx branch)
git checkout 0.9.0.dev

install Python 3 packages
pip3 install --user -r requirements.txt

install Bootstrap and other vendor resources locally
./fetch-vendor-resources.sh

Run the final setup commands to initialize a local Sqlite3 database in local/db.sqlite to make sure everything is OK so far:

run database migrations (sqlite lite database used by default)
python3 manage.py migrate

load a few critical modules
python3 manage.py load_modules

create superuser with initial account
skip if you pass environment variables to connect to a persistent database
python3 manage.py first_run

python3 manage.py first_run

Start GovReady-Q

run the server
python3 manage.py runserver

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

Ubuntu 16.04

Installing on Ubuntu

Instructions provide basic guidance on setting up GovReady-Q on an Ubuntu 16.04 server with Nginx. These commands should be run from the root directory of the GovReady-Q code repository.

GovReady-Q calls requires Python 3.6 or higher to run and several Linux packages to provide full functionality.

upgrade apt-get
apt-get update && apt-get upgrade -y

install dependencies
apt-get install -y \
 unzip \
 python3 python-virtualenvpython3-pip \
 python3-yaml \
 nginx uwsgi-plugin-python3supervisor \
 memcached \
 graphviz

optional install gcc to build the uWSGI Python package.
sudo yum install gcc

optional insall of postgress and/or mysql
apt-get install -y postgresql mysql-devel

Installing GovReady-Q

Clone GovReady-Q source code and install.

clone GovReady-Q
git clone https://github.com/govready/govready-q
cd govready-q

checkout the 0.9.0.dev (or desired 0.9.0.rc-0xx branch)
git checkout 0.9.0.dev

install Python 3 packages
pip3 install --user -r requirements.txt

install Bootstrap and other vendor resources locally
./fetch-vendor-resources.sh

Run the final setup commands to initialize a local Sqlite3 database in local/db.sqlite to make sure everything is OK so far:

run database migrations (sqlite lite database used by default)
python3 manage.py migrate

load a few critical modules
python3 manage.py load_modules

create superuser with initial account
skip if you pass environment variables to connect to a persistent database
python3 manage.py first_run

Start GovReady-Q

run the server
python3 manage.py runserver

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

Windows

Installing on Windows (with Docker)

GovReady-Q can only be installed on Windows using Docker.

Make sure you first install Docker (https://docs.docker.com/docker-for-windows/install/).

Start

Run the docker container in detached mode
docker container run --name govready-q --detach -p 8000:8000 govready/govready-q-0.9.0.dev

Create admin account and organization data
Skip if you pass environment variables to connect to a persistent database
docker container exec -it govready-q first_run

Stop, start container
docker container stop govready-q
docker container start govready-q

View logs - useful if site does not appear
docker container logs govready-q

To destroy the container and all user data entered into Q
docker container rm -f govready-q

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

Upgrading to 0.9.0 from 0.8.x

Backup your database before upgrading to 0.9.0. Release 0.9.0 performs database changes that makes rolling back difficult.

See Migration Guide for GovReady-Q (0.8.6 to 0.9.0).

Adding and Managing “Compliance Apps” in 0.9.0

GovReady-Q wll load a small set of example questionnaires as part of the python manage.py first_run command during installation.

GovReady-Q must be configured by an administrator to load additional compliance apps (e.g., assessments and questionnaires) from one or more sources, which can be local directories or remote git repositories. Full administrative privileges are assigned to original user account created when executing python manage.py first_run during installation.

App Sources are configured in the Django admin at the URL /admin on your GovReady-Q domain under App Sources:

[image: App Sources list]
Each App Source points GovReady-Q to a directory or repository of compliance apps.

[image: Example App Source]
The first App Source field is the Slug. The Slug is a short name you assign to the App Source to distinguish it from other App Sources. The Slug is used to form URLs in GovReady-Q’s compliance apps catalog, so it may only contain letters, numbers, dashes, underscores, and other URL path-safe characters.

There are four types of App Sources: local directories, remote git repositories using HTTP which are typically public repositories, remote git repositories using SSH which typically use SSH deploy keys for access, and remote GitHub repositories using a GitHub username and password for access.

Local Directory

The Local Directory source type directs GovReady-Q to load compliance apps from a directory on the same machine GovReady-Q is running on. (When deploying with Docker, that’s on the container filesystem unless a path has been mounted to a volume or to the host machine.)

In the Path field, enter the path to a local directory containing compliance apps. This path is expected to contain a sub-directory for each compliance app contained in this source. For instance, if you have this directory layout:

.
└── home
 └── user
 └── compliance_apps
 ├── myfirstapp
 │ └── app.yaml
 └── mysecondapp
 └── app.yaml

then your Path would be /home/user/compliance_apps.

The path can be absolute or relative to the path in which GovReady-Q is installed.

Git Repository over HTTPS

The Git Repository over HTTPS source type is for git repositories, such as on GitHub or GitLab, that can be cloned using an HTTPS URL. These repositories are typically public, or in an enterprise environment public within your organization’s network.

Paste the HTTPS git clone URL — such as https://github.com/GovReady/govready-apps-dev — into the URL field. Here’s what that looks like:

[image: App Source for a public git repository]
The other fields can be left blank.

The Path field optionally specifies a sub-directory within the repository in which the compliance apps are stored if they are not stored in the root of the repository. For instance if the repository has a directory layout similar to:

.
└── github.com/organization/repository
 └── apps
 ├── myfirstapp
 │ └── app.yaml
 └── mysecondapp
 └── app.yaml

then set the Path field to apps.

If the compliance apps are not in the repository’s default branch (i.e. something other than the typical master default branch), then set the Branch field to the name of the branch to read the compliance apps from.

You can use HTTPS to access private repositories by placing your username and password or personal access token [https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/] into the URL, such as:

https://username:password@github.com/GovReady/govready-apps-dev

Since this requires user credentials, it should be avoided for production deployments in favor of using Git Repository over SSH (see below).

Git Repository over SSH

If your git repository is private and accessible using an SSH URL (which typically looks like git@github.com:organization/repository.git) and an SSH public/private keypair, such as with GitHub or GitLab deploy keys, then use the Git Repository over SSH source type.

Create a new SSH key for your GovReady-Q instance to be used as a deploy key:

ssh-keygen -q -t rsa -b 2048 -N "" -C "_your-repo-name_-deployment-key" -f ./repo_deploy_key

Your GovReady-Q instance will hold the private key half of the newly generated keypair, and your source code control system will hold the public key.

Back in the Django admin, set the Source Type to Git Repository over SSH. Paste the git clone SSH URL into the URL field. Then open the newly generated file repo_deploy_key and paste its contents into the SSH Key field. Here’s what that looks like:

[image: App Source for a private git repository]
The other fields can be left blank. Path and Branch can be set the same as with the Git Repository over HTTPS source type (see above).

Copy the public key in the newly generated file repo_deploy_key.pub into the deploy keys section of your source code repository. Here is what that looks like on GitHub:

[image: Adding a deploy key to GitHub]
Make the key read only by leaving “Allow write access” field unchecked and click Add the key to save the key.

GitHub Repository using the GitHub API

This source type can be used to access private GitHub repositories using a GitHub username and password or a username and personal access token [https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/].

Set the Repository field to the organization name and repository name, separated by a slash, as in the repository’s URL following github.com/. In Other Parameters, paste a small YAML-formatted document holding a GitHub username and password or username and personal access token, formatted as follows:

auth:
 user: 'myusername'
 pw: 'mypassword'

The other fields can be left blank. Branch can be set the same as with the Git Repository over HTTPS source type (see above).

Since this source type requires user credentials, it should be avoided for production deployments in favor of using Git Repository over SSH.

Compliance Apps

Compliance Apps are the actual assessments and questionnaires, the “data packs”, that drive GovReady-Q.

The AppSource admin now lists all of the apps provided by the source and has links to import new app versions into the database and to see the app versions already in the database by version number. When the App Source is defined, additional options appear on the database App Source admin page to selectively add individual projects and assessments from the App Source repository to the be published on GovReady-Q. Any time the individual admin page for an App Source is viewed, the App Source is rescanned and new versions of the apps are displayed to be selectively added to be available to users on GovReady-Q.

[image: screenshot of App Sources list of apps]
When starting a compliance app (i.e. creating a new project), we no longer have to import the app from the remote repository — instead, we create a new Project and set its root_task to point to a Module in an AppVersion already in the database.

App loading is refactored in a few places. The routines for getting app catalog information from the remote app data are removed since now we only need it for apps already stored in the database.

The AppSource admin’s approved app lists form is removed since adding apps into the database is now an administrative function and the database column for it is dropped.

AppVersion now has a boolean field for whether the instance should be included in the compliance apps catalog for users to start new projects with that app.

 Migration Guide for GovReady-Q v0.8.6 to v0.9.0

Migration Guide for GovReady-Q v0.8.6 to v0.9.0

Major Changes between v0.8.6 and v0.9.0

Changes GovReady-Q users will encounter in v0.9.0:

	Organization subdomains are no longer used - everything is on the main domain.

	Individual Questionnaires/Assessments from an App Source must now be explicitly added to the catalog via the Django admin page. More information can be found in the version 0.9.0 section of the GovReady-Q documentation.

	Assessments are referred to as “Projects” in the UI.

	“Projects” are organized into “Portfolios.” Every Project belongs to exactly one Portfolio.

	Users can be added to Portfolios and be granted different permissions in Portfolios via an improved permission model.

	v0.8.6

	v0.9.0

	What migrating does

	Subdomains.

	Single domain.

	Single domain is used as per host param in local/environment.json file or Docker config params.

	Organizations associated with different subdomains.

	Single “master” organization.

	A “Portfolio” is created for each Organization with the same name as the Subdomain. Organizations continue to exist in database, but are not used.

	Users are associated with multiple subdomain organizations.

	All users associated with single instance.

	Preserves users.

	User have different profiles for each subdomain organization.

	User has single profile.

	First profile is kept and can be edited by user.

	User “is staff” and “is super user” set in Django Admin.

	User “is staff” and “is super user” set in Django Admin.

	Roles preserved, see Roles and Permissions in v0.9.0 section.

	Started and completed apps.

	Started and completed apps.

	All existing apps/questionnaires are preserved. Each questionnaire becomes associated with the “Portfolio” having the same name as the Organization to which the project was previously associated.

	User signs in under each subdomain.

	User signs in once.

	Subdomain associates are removed.

Complete list of changes: https://github.com/GovReady/govready-q/blob/0.9.0.dev/CHANGELOG.md [https://www.google.com/url?q=https://github.com/GovReady/govready-q/blob/0.9.0.dev/CHANGELOG.md&sa=D&ust=1567539997944000].

Migration Process

General Guidelines

	Make sure your live data is backed up, and can be found and restored properly, before, during, and after the migration.

	Do test migrations on test servers first, to ensure you understand the process and have worked out any kinks, before working on production servers.

	Check for customizations, and preserve or modify them as needed.

Back Up Your Production Data

	Ensure that you have a backup of your production data, and that it is safe, and will be available for a successful restore.

Read the Documentation

	Familiarize yourself with the migration process before conducting the first test migration.

	Make sure GovReady-Q official documentation is working for you.

Do a Test Migration

	Use test data that will model and exercise the same features as your production data.

	Use a clean install of the version you run in production, with test data installed.

	Migrate your customizations to the test platform.

	Perform the upgrade to v0.9.0.release.

	Test to ensure the upgrade performed properly. Keep notes as you test.

	Repeat until you’re comfortable with the process and results.

	Optionally have selected end-users sign into the upgraded test instance to perform their own tests.

Distribute a Migration Plan

	Create a migration plan. Include user impacts, timelines, contingency plans, and technical details (perhaps in a separate technical plan).

	Confirm that your colleagues who are responsible, accountable, consulted, and informed about the migration are satisfied with the plan.

	Distribute the plan to anybody affected.

	When migration starts, communicate to users that migration is starting, and keep a communication line with them open.

Do the Production Migration for Deployments with Source Code

	Take your GovReady-Q instance offline.

	Back up the most recent version of the production database.

	Test a restore of most recent version of the database.

	Update code to version 0.9.0.release.

	Run pip install -r requirements.txt to get new libraries.

	Update any template and file customizations in your workstream.

	Run python manage.py migrate to update your database schema.

	Run python manage.py runserver to run your updated instance.

Do the Production Migration for Deployments with Docker/Containers

	Take your GovReady-Q instance offline.

	Back up the most recent version of the production database.

	Test a restore of most recent version of the database.

	Synchronize your container customizations to produce a new version of your container.

	Deploy container running version 0.9.0 with environment variable ``DB_BACKED_UP_DO_UPGRADE`` set to “True”. (This special environment variable is required to avoid accidental running of database migrations before database has been backed up.)

	Docker will automatically run migrations as part of deployment.

Migration Finalization and Testing

	Test the new instance.

	Back up the newly migrated production database.

Post Migration Clean Up

	Mark all old Notifications emailed as True. (v0.9.0 notification checks emailed status of notifications and sets emailed to True after email is sent.)

	Review Help Squad, Reviewers, and Administrators.

	The migration converts Organizations to Portfolios.

	Help Squad, Reviewers, and Organization admins are only preserved on the “main” organization (e.g., first organization created).

	The migration does not modify the Help Squad or Reviewers.

	Organization Admins are associated with the “main” organization.

	You should review who has these permissions and adjust accordingly after migrating.

	Release the production instance to users.

Roles and Permissions in v0.9.0

	Permission/Role Name

	Description

	What Happens During Migration

	Organization > get_who_can_read

	A user can see an Organization if: they have read permission on any Project within the Organization, they are an editor of a Task within a Project within the Organization (but might not otherwise be a Project member), they are a guest in any Discussion on TaskQuestion in a Task in a Project in the Organization.

	A Portfolio is created for every organization that exists.

	projectmembership

	See Project > has_read_priv

	See below.

	Project > has_read_priv (Inverse is Project > get_all_participants)

	Team members + anyone with read privs to a task within this project + anyone who is a guest in discussion within this project.

	See below.

	Project > is_admin

	Person flagged as project admin in ProjectMembership.

	Grant project_delete permission on project and portfolio_owner permission for portfolio for which project is a part

	Project > is_member Project > editor_of task(s)Project > discussion_guest_in discussion(s)

	Various permissions in a project.

	Grant project_view, project_add, project_change, for project of which project is a part; Grant Portfolio_view, portfolio_add, portfolio_change for which project is a part after migration.

	task_editor

	The user that has primary responsibility for completing this Task.

	Grant project_view, project_add, project_change, for project of which task is a part; Grant Portfolio_view, portfolio_add, portfolio_change for which task is a part after migration.

	help_squad

	Receives all discussion messages

	Not modified by migration

	reviewer

	Can set review status of answers.

	Not modified by migration

	superuser

	Django designated superuser.

	Not modified by migration

	Folder permissions

	A folder object exists but is not used.

	Not modified by migration

	portfolio_owner

	Permission on portfolio object, can invite others to portfolio and can make others to portfolio owner

	If user was project_membership and had project_membership admin flag True, user is made portfolio owner.

	Portfolio_view, portfolio_add, portfolio_delete, portfolio_change

	Permissions on Portfolio objects. Currently everyone who has one of these has all of these permissions.

	Every user gets a portfolio with their name for which user is the portfolio_owner. For every organization, a portfolio is created with the same name and associating the organization projects with the portfolio. Users get access to the projects.

	project_view, project_add, project_change, project_delete

	Permissions on Project objects. Currently everyone who has one of these has all of these permissions.

	If user has project_membership on project, user gets project_view, project_add, project_change. If user has project_membership on project and project_membership admin flag True, user also gets project_delete. If user has task object for a project, user gets project_view, project_add, project_change. If user is a guest of a discussion object for a project, user gets project_view, project_add, project_change.

 Index

Index

 Runbook

Runbook

Intentions:

This document assesses what’s needed to operationalize Q, and other GovReady apps, in a manner that supports the following in a cloud provider:

	Releases: frequent, automated releases of small batches (push-button or scripts)

	Availablity: general availability of (app).govready.com and (app).dev.govready.com

	in most cases we’ll run apps on single instances (with autorestart/scaling to make sure that instance is always up), and allow releases to impose downtime

	users of apps will tolerate scheduled downtime provided it happens humanely and non-destructively.

	Persistence: data persistence

	Pricing: predictable OpEx pricing

	Performance: satisfactory performance

	Backups strategies for backup, recovery, business continuity and platform migration (minimal vendor lock-in)

	CI: CI pipelines and the practice of continuous delivery

	apps should always be ‘releasable’ and releases happen whenever they’re in the interest of the business.

	Logging/Monitoring/Metrics:

	log aggregation and searching

	monitoring and alerting

	metrics (lower priority)

	DNS: Automated DNS provisioning

	Certs: Management of HTTPS/TLS certificates

	RBAC: Role-based authentication – GovReady team members should each have their own credentials, preferably with a single provider, to access all operational entities.

As such, it’s not yet a formal runbook, but can be the basis for one as the missing pieces are fleshed out.

Further, this guide (or future iterations) should consider on-premise releases of GovReady applications. Esp.
distribution of apps for release as standalone installs in other environments that are not publicly available
and possibly don’t have access to Internet resources.

Hosting strategies:

As of this writing, we are looking at two main paths for running Q in a Cloud Service Provider:

Pivotal Web Services (PWS)

Pivotal’s implementation of Cloud Foundry as a service is PWS: Pivotal Web Services. In this doc PWS refers to this platform, and CF or Foundry refers to any implementation of Cloud Foundry.

This doc, as of July 2016, is focused on operationalizing Q for PWS.

AWS

Alternatively, most apps should be releasable to AWS, so potential consumers of our apps can model the release not only into AWS, but with adaptation, into other API-driven IaaS platforms such as Azure, Google Compute or Digital Ocean.

Writing an AWS runbook is a secondary goal to having a solid platform in PWS

[bookmark: releases]Releases

Cloud Foundry is designed for frequent release with the cf push API command. The Makefile with this app demonstrates how to stage prerequisite resources and push those to the new instances running the applications.

ToDo

	[] Harden scripted release process for repeatability

	[] Acceptance and Production releases should only occur from a centralized location (see CI/CD below)

	[] Acceptance and Production releases should be logged/published/displayed

[bookmark: availability]Availability

PWS runs atop AWS, so it’s availability probably cannot be higher than the underlying platform. I cannot find any PWS SLA guarantees. The underlying AWS EC2 SLA is 10% credit for availability between 99.95% and 99.0%, 30% credit for availability less than 99.0%. 99.95% availability is yearly downtime of 4h22m [http://uptime.is/99.95].

For apps that are still in heavy development with a userbase still being established, I think a 99.5% availability (50m weekly downtime [http://uptime.is/99.5]), including release downtime, is acceptable.

I recommend that we not code Q for live migrations, and that the release strategy is: Green-Maintenance-Green, or:

	app runs in the Green environment

	for releases,

	route traffic to a “Maintenance underway” page (with a countdown clock)

	in Green, stop app, release code, do migration, start app

	route traffic back to Green environment

Q should run with a single instance, and PWS set to auto-scale a new instance if the current instance unexpected dies. Read also releasing by Blue-Green Deployments [http://docs.run.pivotal.io/devguide/deploy-apps/blue-green.html].

ToDo

	[] Determine Q if can support live migrations; if so then perhaps a faster Blue/maintenance/Green release can happen, or even just Blue/Green zerodowntime.

	[] Test PWS autoscale/autorestart

	[] Write the above-described release process.

[bookmark: persistence]Persistence

PWS offloads data persistence to 3rd-party partners in the Marketplace. The MySQL service is from ClearDB, the highest tier is $100/month per DB, daily backups, and 40 connections.

ToDo

	[] Test restore from backups

	[] Document migration off PWS

[bookmark: pricing]Pricing

PWS itself is priced simply by Gb of memory. Nothing else. If Q has 3 versions running (dev, acceptance, prod) each with 512MB, then it’ll cost: $32.40

ToDo

	[] Determine acceptance memory size for Q (512MB? 128?….)

[bookmark: performance]Performance

PWS seems to offer no tunables in terms of network, i/o or CPU. They do have integrated dashboards, so we should be able to watch for bottlenecks and consider addressing them. See the vertical scaling section of this document [http://docs.pivotal.io/pivotalcf/1-7/devguide/deploy-apps/cf-scale.html]

ToDo

	[] Ask Pivotal Support for more information on performance tuning

[bookmark: backups]backups

Restores from backup needs to be addressed per persistence section above. The DB is the only persistent aspect to the application itself.

However, in the event of a complete loss of PWS, we would also want:

	all application logs

	dump of recent metrics data

	dump of roles and access controls

There’s no immediately available resource on dumping logs. The log docs only discuss the --recent flag. Third-party logging is discussed here [https://docs.run.pivotal.io/devguide/services/log-management.html]

ToDo

	[] Investigate dumping all of the above periodically. Open support ticket.

[bookmark: ci]CI

This project needs

	continuous integration (tests run on every PR to GitHub)

	continuous delivery (app can be released by repeatable process)

Options via PWS Marketplace:

	(none)

Options from by dint of Pivotal sponsorship:

	Concourse.ci

Options via PWS Technology partners:

	CloudBees (hosted Jenkins)

Options via GitHub integrations:

	Travis

	CodeShip

	CircleCI

	Shippable

	BuildKite

	Semaphore

	SnapCI

ToDo

	[] Evaluate pipeline with Concourse via blog/tutorial [https://blog.pivotal.io/pivotal-cloud-foundry/products/continuous-deployment-from-github-to-pws-via-concourse]

	[] Write a test harness

[bookmark: logging] Logging/Monitoring/Metrics

PWS has some primitives to help.

For logging, Loggregator stores limited amt on disk, so we’d need a third party ‘drain’ (DataDog? Sumologic?)

For metrics, PWS has a built-in metrics dashboard. Also has off-the-shelf NewRelic integration. Recommend using build-in metrics until its shown to be inadequate.

For monitoring, we should use synthetic monitors to test site availability and functionality. We should get notifications when a service is restarting, or has been briefly unavailable, or has not met our metrics (e.g. response time). If we have uptime expectations, we should have alarms that are routed to on-call via one of OpsGenie, PagerDuty or VictorOps.

Todo

	[] Q needs application level Logging – add this

	[] Logging: Use Loggregator until we have log retention guidelines

	[] Metrics: Use PWS metrics until more functionality is needed

	[] Monitoring: Read and digest this page: https://docs.pivotal.io/pivotalcf/1-7/opsguide/metrics.html

[bookmark: dns]DNS

PWS supports routing for ‘private domains’, e.g. routing traffic for q.govready.com to a mapped applications.

ToDo

	[x] Test routing qq.govready.com to the prerelease

	[x] Document the process for mapping DNS and routes to apps

DNS implementation and testing notes:

govready.pburkholder.com

Create route from http://govready.pburkholder.com to app govready-q in space sandbox.

First, create a cname:

govready.pburkholder.com. 59 IN CNAME govready-q.cfapps.io.

Then:

$ cf target -s sandbox
$ cf create-domain GovReadyPDB pburkholder.com
Creating domain pburkholder.com for org GovReadyPDB as pburkholder+govready@pobox.com...
OK
$ cf map-route govready-q pburkholder.com --hostname govready
Creating route govready.pburkholder.com for org GovReadyPDB / space sandbox as pburkholder+govready@pobox.com...
OK
Adding route govready.pburkholder.com to app govready-q in org GovReadyPDB / space sandbox as pburkholder+govready@pobox.com...
OK

APP.dev.pburkholder.com

For the development branch, changed manifest.yml to have:

applications:
- name: govready-q
 services:
 - cf-govready-q-pgsql # needs provisioning between deployments

and created a generic route mapping from the development space to dev.pburkholder.com:

cf create-route development dev.pburkholder.com

and then launch the app with:

cf push -d dev.pburkholder.com

To test routes independent of DNS, use Curl directly against the http endpoint:

curl -vs http://52.72.73.102 -H "Host: govready-q.dev.pburkholder.com"

In DNS, I’ve configured the wildcard *.dev.pburkholder.com is a CNAME to foo.cfapps.io

{
 "ResourceRecords": [
 {
 "Value": "foo.cfapps.io"
 }
],
 "Type": "CNAME",
 "Name": "\\052.dev.pburkholder.com.",
 "TTL": 60
 },

[bookmark: certs]Certs

PWS provides SSL for hosted domains: https://docs.run.pivotal.io/marketplace/pivotal-ssl.html

Should we desire CDN integration, see https://docs.run.pivotal.io/marketplace/integrations/cloudflare/index.html

ToDo

	[] Enable HTTPS for https://qq.govready.com DNS test once that’s complete

	[] Document process (or add tooling) for additional apps.

[bookmark: rbac]RBAC

It seems that GSA/18f has done due diligence for the CF UAA [https://github.com/opencontrol/cf-compliance/blob/master/UAA/component.yaml] Looks good.

ToDo

	[] Set up root account and share with Greg

	[] Add Josh and Peter and Greg as users

	[] Document user deactivation

_images/appsource_apps.png
Compliance Apps
COMPLIANCE APP

web_server_nginx
Atlassian-Jira
Windows-Workstation
generic_point_of_contact
unix-host-system
Nagios

Generic-Router
Cent0S-6-6
Telco-Room
log-storage
django-docker-system
ssp

Cent0S-6-7
fisma_level
Cent0S-6-9
drupal_website
mac0S-10-12-4

demo-generic-website

NEW VERSION AVAILABLE?

0.95 [Add]
0.2 [Add]
0.2 [Add]
0.95 [Add]
0.2 [Add]
0.2 [Add]
0.2 [Add]
0.2 [Add]
0.2 [Add]
0.2 [Add]

0.3 [Add]

0.2 [Add]

0.2 [Add]

0.2 [Add]

VERSIONS IN CATALOG ~ HIDDEN VERSIONS

0.95 -

0.3.0 -

_images/appsource_git_https.png
Django administration

Home > Guidedmodules > App sources > Add app source

Add app source

Slug:

How is this AppSource
accessed?

Source Type:

URL:

mygitrepo

A unique URL-safe string that names this AppSource.

Git Repository over HTTPS (Public Repository) J

What kind of app source is it?

https://github.com/GovReady/govready-apps-dev

The https: URL to a public git repository, e.g. https://github.com/GovReady/govready-q.

_images/appcatalog2.png
GOVREADYQ

Unclassified Information present in
your system.

caEs

Point of Contact

Enter name and contact details for a
point of contact.

caEs

PROCESSES
FISMA System Security Plan (SSP)

Prepare a System Security Plan for by the NIST
Risk Management Framework

caEs

TECHNOLOGY

myfirstapp
Short description. %

caen

-

The Company, Inc.

im0 =

System Name and Details

Enter name, description, technical
overview, and status for 2 system.

o~ T -

Privacy Policy for Web Site

Create and publish Privacy Policy for
web site transparency for 2 small web
team

caEs

ok

]

System FISMA Level

Determine systems FISMA security
categorization level (Low, Medium,
High)

o T

ol

_images/appcatalogafterchange.png
GOVREADYQ

your system.

caEs

Point of Contact

<8
Enter name and contact details for a f
point of contact.

caEs

PROCESSES

FISMA System Security Plan (SSP)

Prepare a System Security Plan for by the NIST
Risk Management Framework

caEs

TECHNOLOGY

myfirstapp
Achieve compliance for our

organization's systems.

The Company, Inc.

System Name and Details]

Enter name, description, technical
overview, and status for 2 system.

o~ T -

Privacy Policy for Web

Create and publish Privacy Policy for
web site transparency for 2 small web
team

caEs

o5 -]

System FISMA Level I

Determine systems FISMA security
categorization level (Low, Medium,
High)

o T

_images/appsources_list.png
Home > Guidedmodules > App sources

Select app source to change

Action: | ==eemumme j | Go | 0ofaselected

O swe SOURCE FLAGS
O myorg local filesystem at ../continuous-ato-kit

O apps-dev https://github.com/GovReady/govready-apps-dev

O system local filesystem at modules/system SYSTEM
@] null source

4 app sources

_images/authoringtoolquestion.png
Edit Question

Questionid |]

‘The identifier for the question, which is used in templates and the AP %

Title What is your favorite science fiction franchise?

Atitle for the question.

Prompt What is your *least* favorite science fiction franchise?

Atemplate rendered as the prompt for the question. The first line will be shown in a arger font.
Answer Type Single Choice v

Choices startrek|Star Trek|
starwars|Star Wars|
lordoftherings|Lord of the Rings|
other|Other|

Put each choice on a separate line and provide as KEY|LABELIHELP.

Impute Impute conditions are run in order. The first condition to match determines the answer for this question. Each
conditione _ condition is a Jinja2 expression. If the condition evaluates to true, the condition matches.

_images/appsource_git_ssh.png
Add app source

Slug:

How is this AppSource
accessed?

Source Type:
SSH URL:
Branch:
Path:

SSH Key:

mygitrepo

A unique URL-safe string that names this AppSource.

Git Repository over SSH (Private Repository) j

What kind of app source is it?

git@github.com:GovReady/govready-apps-dev.git

The SSH URL to a private git repository, e.g. git@github.com:GovReady/govready-q.git.
The name of the branch in the repository to read apps from. Leave blank to read from the ¢

The path to the apps. For local directory AppSources, the local directory path. Otherwise tt

MIIEpAIBAAKCAQEAs2r6cysJild5I15LJFyzwcFD/nuYjKO
zMhpjfOpuSJ7AnvKRi

Paste an SSH private key here and send the public key to the repository owner. For GitHub

_images/appsources.png
Home Guidedmodules » App sources ap

Change app source

Slug:

How s this AppSource.
accessed?

‘Source Type:

URL:

Path:

Other Parameters:

(O Trustassets

apps-dev
A unique URL-sate sting tha names tis AppSouce

Git Repository over HTTPS (Public Repository) :I
Whnat kind of app source is it?

https://github.com/GovReady/govready-apps-dev |

“The hitps: URL to a public git repository, .g. htps://github.com/ GovReady/govready-g.

published |

“The name of the branch in the repository to read apps from. Leave blank to read from the defaut branch, which is usually ‘master”

svos)
The path to the apps. For local directory AppSources, the local directory path. Otherwise the path within the repository, or blank if the apps are at the repository root.

Other parameters specified in YAML.

Are assets trusted? Assets include Javascript that will be served on our domain, Python code included with Modules, and Jinja2 templates in Modules.

Apps from this source are available to all organizations.
Tur off to restrictthe Modules loaded from this Source to partiular organizations.

Available to orgs:

Available available to orgs @

Q | Fiter

The Secure Company

_images/authoringtools.png
GOVREADY! The Compan

A myfirstapp ~ Components

& settings

You are in author mode. Authoring tools have been enabled for this module. 2+ invite

EditApp 4+ Add Question 3 Reload App from local filesystem at /tmp/tmptw8qebk7 Ereview
% 11 api Docs

== Myfirstapp

Use this app to achieve compliance.

" Example Module

GovReady 2018

_images/firststart.png
powered by GovReady Q

Open source compliance software for everyone to innovate securely

Stop suffering and start answering simple
questions with your teammates. We'll help you
identify security risks, learn compliance controls,
and prepare required documents.

Sign In

Username
Password

Remember Me

Forgot Password?

_images/generic_website_app.png
GOVREADY-Q

® Generic Web Site Components

£} Settings

Generic Web Site

H1A71Docs

® Update App

This compliance app will help you achieve compliance for a generic web site. The app will produce

complian{,adocuments and artifacts for NIST SP 800-53 Rev 5 and NIST SP 800-171Rev 1. View SSP »

Backlog Selected In Progress Completed

System Overview

System Profile

System
Categorization

Control Selection
Report

_images/github_deploy_key_add.png
I GovReady / govready-q @uUnwatch~ 8 KStar 8 YFork 4

Code Issues 74 Pull requests 0 Projects 0 Wiki Insights £} Settings

Options Deploy keys / Add new
Collaborators & teams

Title
Branches
Webhooks

Key
Integrations & services

sshorsa

AAAAB3NzaC1yc2EAAAADAQABAAABAQCzavpzKwmKV3kjkskXLPBWUP+e5iMo7MyGmN/Sm5InsCe8pGJX
yywPla15NccAjwLVi3sDI3yJDbYurElpXGR3T1Wn2lcmREMIEPUzUgNTZzI3AjIVNWSDyF9Gn1hugM6U2Nh
Alerts /YVthEzZOUA9+F10wDJdBcwPMHrfiz+c5jMQri/Qi07/P
/2K/ZeAbL44ivCB41CHZs5ebBQrMgUqOgQqqzNNXDykBFNSvU1
IXYZyTGVGP1wRpkvzQvOviwnKNzhuW4QxH1wzr7cDMSNYyUiw
/GKKao+gMu1gr7TQdAK5PUkupeE7PxVFc5ss18PVLDPFf97BE1pkgHh8x/kfq1mSGT _your-repo-name_-
deployment-key

Deploy keys

() Allow write access
Gan this key be used to push to this repository? Deploy keys always have pull access.

Add key

nav.xhtml

 Table of Contents

 		
 GovReady-Q Documentation

 		
 About GovReady-Q

 		
 Why GovReady-Q?

 		
 How GovReady-Q Accelerates Compliance

 		
 GovReady-Q Philosophy

 		
 GovReady-Q Features

 		
 Using Hosted GovReady-Q

 		
 System Architecture

 		
 Downloading GovReady-Q

 		
 Installing GovReady-Q

 		
 Finding Compliance Apps

 		
 For Hosted Version

 		
 For Local Installs

 		
 Creating Your Own Compliance Apps

 		
 Documentation

 		
 Support

 		
 Reporting Bugs & Issues

 		
 License / Credits

 		
 About GovReady PBC

 		
 Deploying GovReady-Q

 		
 System Requirements

 		
 Software Requirements

 		
 Hardware Requirements

 		
 Installing GovReady-Q

 		
 Deploying with Docker

 		
 Deploying on macOS

 		
 Deploying on RHEL 7 / CentOS 7 / Amazon Linux 2

 		
 Deploying on Ubuntu

 		
 Deploying on Windows (with Docker)

 		
 Deploying GovReady-Q in Production environments

 		
 Set basic configuration variables

 		
 Setting up the Database Server

 		
 Setting up a Webserver

 		
 Creating the First User

 		
 Other Configuration Settings

 		
 Updating Deployment

 		
 Deploying GovReady-Q for Development

 		
 Quickstart

 		
 Creating local/environment.json file

 		
 Invitations on local systems

 		
 Updating the source code

 		
 Setting up a Database for Production Workloads

 		
 Setting Up Postgres

 		
 Configuring a Reverse Proxy Webserver for Production Use

 		
 Setting Up Apache & uWSGI

 		
 Setting up Nginx

 		
 Multi-Container GovReady-Q and NGINX via Docker Compose

 		
 Overview

 		
 Set Up A Docker Host

 		
 Get This Kit

 		
 SSL/TLS Certificates for HTTPS

 		
 Build Images

 		
 Run GovReady-Q + NGINX Multi-container App

 		
 Specify Parameters

 		
 Check Logs From A Container

 		
 GovReady-Q Is Up

 		
 Execute A Script In A Container

 		
 Stop And Remove Containers

 		
 Environment Settings

 		
 Available Configuration Settings

 		
 Production Deployment Environment Settings

 		
 Enterprise Single-Sign On Environment Settings

 		
 Custom Branding Environment Settings

 		
 Enterprise Single-Sign On / Login

 		
 Proxy Authentication Server

 		
 Applying Custom Organization Branding

 		
 Creating the branding directory

 		
 Activate the branding package

 		
 Overriding templates

 		
 Adding custom CSS

 		
 Keeping your templates up to date

 		
 Creating a custom Docker image

 		
 Permissions

 		
 What Q tracks

 		
 Users

 		
 Global user data

 		
 Segmented user data

 		
 System staff

 		
 Portfolios

 		
 Access to Portfolios

 		
 Folders

 		
 Projects

 		
 Membership

 		
 Read Access

 		
 Operations

 		
 New Projects

 		
 Tasks

 		
 Authoring Compliance Apps

 		
 Understanding Compliance Apps

 		
 Compliance Apps are Collections of Modules

 		
 App Structure

 		
 App YAML

 		
 Top Level Apps

 		
 Adding Apps to GovReady-Q Deployments

 		
 Compliance App Authoring Tutorial

 		
 Step 1: Prepare your local environment

 		
 Step 2: Install the GovReady-Q Compliance Server, Docker version

 		
 Step 3: Creating a compliance app

 		
 Step 4: Edit the compliance app’s YAML files

 		
 Step 5: Edit a compliance app using GovReady-Q’s authoring tools

 		
 Step 6: Deploy the app to a production instance of GovReady-Q

 		
 App Sources

 		
 App Source Slug

 		
 App Source Type

 		
 Controlling access to apps

 		
 Modules, Questions, and Documents YAML Reference

 		
 Module

 		
 Documents

 		
 Module Assets

 		
 Questions

 		
 Question Order

 		
 Updating Modules

 		
 Automation API

 		
 Overview of the GovReady Q API

 		
 Using the Compliance API

 		
 API keys

 		
 Getting data from the app using the GET API

 		
 Updating data using a POST request with form data

 		
 Updating data using a POST request with JSON

 		
 API Data Schema

 		
 Data Design Guide

 		
 Users, Organizations, Projects, Folders, and Invitations

 		
 Compliance Apps, Modules, Questions, Tasks, and Answers

 		
 Compliance Apps (Questions, Business Logic, and Templates)

 		
 User Answers (Tasks and Answers)

 		
 Imputed Answers and Output Documents

 		
 Database Query Examples

 		
 Discussions

 		
 Generating Detailed Data Models

 		
 Testing

 		
 Running Tests

 		
 Test Coverage Report

 		
 Code Scanning and Analysis

 		
 Simple Static Code Analysis

 		
 Detailed Static and Dynamic Code Analysis

 		
 Dependency Management and Vulnerability Testing

 		
 Populating sample data for manual testing and verification

 		
 Version 0.9.0

 		
 What’s New in 0.9.0

 		
 Screenshots

 		
 Sign-in Page

 		
 Projects List Page

 		
 Portfolios (New in 0.9.0)

 		
 Module View

 		
 Question Page

 		
 Release Date

 		
 Upgrading to 0.9.0 from 0.8.x

 		
 Installing 0.9.0

 		
 Upgrading to 0.9.0 from 0.8.x

 		
 Adding and Managing “Compliance Apps” in 0.9.0

 		
 Local Directory

 		
 Git Repository over HTTPS

 		
 Git Repository over SSH

 		
 GitHub Repository using the GitHub API

 		
 Migration Guide for GovReady-Q v0.8.6 to v0.9.0

 		
 Major Changes between v0.8.6 and v0.9.0

 		
 Migration Process

 		
 General Guidelines

 		
 Back Up Your Production Data

 		
 Read the Documentation

 		
 Do a Test Migration

 		
 Distribute a Migration Plan

 		
 Do the Production Migration for Deployments with Source Code

 		
 Do the Production Migration for Deployments with Docker/Containers

 		
 Migration Finalization and Testing

 		
 Post Migration Clean Up

 		
 Roles and Permissions in v0.9.0

_images/firststart3.png
GOVREAD'

A Assessments

GovReady 2018

The Compan

Ver v07.0-1c2-116-g43d0dae

_images/fisma_level_app.png
GOVREADY-Q

® System FISMA Level Components

£} Settings

-l System FISMA Level

1 API Docs

This project will guide you through determining your system categorization under the NIST Risk

) 7 . ® Update App
Management Framework in order to get the System FISMA Level its Authority to Operate.

Questions

N

Determine Your FISMA Level

Start section

@ CavBoady 9018 Privacy Palicy Torme af Sorvi ar U0 8 J.re2. 5 afeaZE0

_images/govready-q-siteapp-erd.png
api key. 10
api koy_w

api key_wo
dato_joined.

frst_name

s active

s_stat

is_superuser

ast_login

fast_name
notfemais_enablad
notfemais_ast_at
notfemais._last_notilid
password

id
created
exra
subdomain
wpdated

GovReady-Q Compliance Server
https://github.com/GovReady/govready-q
siteapp data model

2017-12-04v002

<0 @ ‘AutoField
accepted use Forelgnkey ()
CharFiel —o<iEa from_project Foreignkey (d)
CharFiel = from_user Foreignkey ()
CharFiel 0= organiation ForeignKey (id)
DateTimeField =0 O== target_content type ForelgnKey (id)
maifio o.user Foreignkey (i)
Crats R e OusTinra
BocieanFiel] AutoField created DateTmeField
BocleanFied project ForeignKey () email iviaton code CharFied
BooleanFiokd O user LEESEEX) extra JSONField
DateTmeField Gy ETT ino_project BooleanField
CharFiel s_admin BocleanField rovoked_at DataTmeFiaid
IntegerFieid vpdsied DateTmeField sontat DataTmeFiaid
DateTmeField argetino JSONField
PostveinagerField arget_object 4 PosivaitagerFiel
CharFiold ot TexFekd
CharFiold to_omai ChrarFiois
updated DataTmeFiaid
. e Y
organization ForeignKey ()
‘AutoField
Py oot task Foreignkey (i)
o e cieaed DataTmeField
e oxra JSONField
=5 is_account poject BooleanFild
is_organizaon.profect NulBooleanField
OateTimeFieid =
e e |
updated DataTmeFiaid
@ AutoField
organization ForeignKey ()
created DateTimeFieid
doscrpion CharField
oxra JSONFiid
™ CharFied
updated OateTimeFieis

© GovResdy PBC 2017

_images/govready-q_system_architecture.png
GovReady-Q System Architecture

v2019-04-05-001

HTTPS/TLS GovReady-Q Server

Enterprise Services

Termination Django/Python 3

Relational
Database

GovReady-Q
- System Boundary -

Hosting Environment

API - future use-

Inbound TCP Ports Outbound TCP Ports
443 HTTPS/TLS Termination 587 SMTP TLS.
993 IMAPS

22 0r 443 git private repos

Email Server

Enterprise Single Sign-On

Data]
System Element
Common Control Library
(gt repo)

Security & Scanning Tools

Enterprise GRC Tools

Other Enterprise Tools

_images/govready-q-discussion-erd.png
GovReady-Q Compliance Server
GOVREADY https://github.com/GovReady/govready-q 2017-12-03 v001

discussion data model

Y —

© GovResdy PBC 2017

_images/govready-q-guidedmodules-erd.png

_images/macosapp.png
A macOS Server

All Answers

macOS File Server Details .~

These fields occur within Enter Information .

Question Answer

Hostname » twiggie m
Security Groups .+ yes m
Security Groups Description .~ There are 17 UNIX groups: adm (2 users: syslog, user), audio (2

users: speech-dispatcher, pulse), cdrom (1user: user), debian-
spamd (1user: debian-spamd), dip (l1user: user), guest-PKpUkr (1
user: guest-PKpUkr), lpadmin (l1user: user), mongodb (1user:
mongodb), nogroup (luser: sync), plugdev (luser: user), postgres
(luser: postgres), root (luser: root), sambashare (luser: user),
scanner (luser: saned), ssl-cert (luser: postgres), sudo (luser:
user), user (luser: user)

Login Message + /etc/issue: m

Ubuntu 16.04.3 LTS \n \1

_images/firststart2.png
The Company, In:

The Company, Inc.

powered by GovReady Q

Open source compliance software for everyone to innovate securely

Stop suffering and start answering simple

> L Sign In
f]uestAlons WI[!‘I y?ur teammates. We Il help you Username
identify security risks, learn compliance controls,
and prepare required documents.
Password
Remember Me

Forgot Password?

_images/samplequestion.png
GOVREAD The Compan:

A myfirstapp ~ Example Module

Progress
. . . . Y v ® What is your favorite science
What is your favorite science fiction franchise? e
Star Trek
Star Wars -and we're done
Lord of the Rings
Other

Skip » W Discuss 2 Assign

GovReady 2018 Ver v07.0-1c2-116-g43d0dae

_images/startedapp.png
GOVREAD'

The Compan

A myfirstapp ~ Components

= Myfirstapp ~—

1 aPipocs
Use this app to achieve compliance.

Autring Tool
N

Example Module

GovReady 2018

2 16-o:

_images/reloadedapp.png
GOVREAD'

The Compan

A myfirstapp ~ Components

== Myfirstapp

Use this app to achieve compliance.

Start Compliance

GovReady 2018

N

& settings

2 invite

11 api Docs

Authoring Tool

2 16-o:

_images/revisedquestion.png
GOVREADY! The Compa

A myfirstapp ~ Example Module

Progress
. " v ® What is your favorite science
What is your /east favorite science fiction franchise? e
Star Trek
Star Wars -and we're done
Lord of the Rings
Other

Skip » W Discuss 2 Assign

0-1c2-116-g43d0dze

GovReady 2018

_images/086_modules.png
GOVREADY-Q Front Ltd.

® (Demo) Basic System Profile = Components

£ Settings

(Demo) Basic System Profile

= Review

2 Documents
This project will guide you through giving your system a unique name and preparing basic system

. 11 API Docs
descriptions.
@Upgmoc App
s e # Auth Tool
System Description uthoring Tool

System Name and Details

In progress

Document basic technical details

Start section

_images/unix-server-hostname-question.png
Branch: published v govready-apps-dev / apps / unix_file_server / file_server.yaml

152 lines (117 sloc) 4.92 KB

id: file_server
title: Unix File Server Details
questions:
- id: hostname

title: Hostname

type: text

prompt: |

What is the hostname of the server?

_images/unix_server_app_catalog_entry.png
Unix Server

Enter information about a Unix Server.

_images/086_sign_in.png
GOVREADY-Q main.localhost:8000

powered by GovReady Q

Open source compliance software for everyone to innovate securely

Stop suffering and start answering simple

Sign In
questions with your teammates. We'll help you
. . . R) Username
identify security risks, learn compliance controls, ‘ ’
and prepare required documents.
Password
Remember Me

Forgot Password?

_images/090_modules.png
GOVREADY-Q

A Frontltd = IT System

£ Settings

IT System Edit :1.+ Invite

Project ID: 10 | Portfolio: Front Ltd

£ Documents

IT System Questionnaires (Pilot) v0.17.8 I

System Info

System Profile

Start section

System Categorization

—— Determine Your FISMA Level

_images/086_projects.png
GOVREADY-Q Front Ltd.

A Assessments 4+ Addsystem | 4+ Addotherapp | A Invite colleague

General Assessments

(Demo) PTA for Information Collections and Forms
3]

(Demo) Basic System Profile
(i)

_images/086_question.png
GOVREADY-Q Front Ltd.

® (Demo) Basic System Profile ~ System Name and Details

Progress:

 Introduction
© System name

What is the preferred official name of the system?

O System abbreviation exists
’ ‘ O System abbreviation

O Does organization use a central
registry?
O System ID from central registry

;34 don’t know

O System name complete

O System type

m O Application type
O Desktop Applicaton Operating
System

O Mobile Applicaton Operating
System

O Launch date
-and we're done

#' Authoring Tool

_images/macosapp_api.png
i macOS Server API

An APl is provided for programmatically getting and updating information stored in this macOS Server app. The API can be used
from command-line tools and programming languages that allow making GET and/or POST HTTP requests.

Getting data from the app using the GET API
Project data can be read from the API using an HTTP GET request to the following URL:

http://localhost:8000/api/vl/organizations/test/projects/47/answers

An API key must be passed in the HTTP zuthorization header. You can get your APl key from the API keys page.

You'll get the following response from the API:

"GovReady O Project API 1.0",
{

"file_server": {

twiggie®,
sing_security_groups": "yes",
sing_security_groups.text”: "Yes",

ecurity groups_description": "There are 17 UNIX groups: ‘adm’ (2 users: ‘syslog’, ‘user’), ‘audio’ (2 us
"security_groups_description.html": "<p>There are 17 UNIX groups: <code>adm</code> (2 users: <code>syslog<|
ogin_message": "/etc/issue:\n\n'’'Ubuntu 16.04.3 LTS \\n \\1'''",

ogin_message.html": "<p>/etc/issue:</p>\n<p><code>Ubuntu 16.04.3 LTS \\n \\1</code></p>"

_images/macosapp_q1.png
Are you using macOS Server security groups on twiggie?

© No

® Yes

Clear» = Mark as Unanswered » W8 Discuss & Assign

Not Reviewed v

_images/090_portfolios_2.png
GOVREADY-Q

Front Ltd

Portfolio ID: 2
This portfolio has 5 projects

Project D Portfolio Role Updated
About the Organization 2 Front Ltd PERMISSIONS HERE 1day, 3 hours ago
(Demo) Basic System Profile 4 Front Ltd PERMISSIONS HERE 1day, 3 hours ago
B IT System 7 Front Ltd PERMISSIONS HERE 7 minutes ago
B IT System 8 Front Ltd PERMISSIONS HERE 3 minutes ago
B IT System 9 Front Ltd PERMISSIONS HERE 29 seconds ago
Users With Access:

DaytonTest (Owner) JECUETE RS

Gerald (Owner)

_images/090_projects.png
GOVREADY-Q

Projects
You have access to 4 projects
Project ID
(Demo) Basic System Profile 4
B IT System
B IT System 8
B IT System

Start a project

Projects are your organization's questionnaires,
assessments and guides needed for authorizations.

Portfolio

Front Ltd

Front Ltd

Front Ltd

Start a project

Role Updated

Owner 1day, 3 hours ago

7 minutes ago

Portfolio Member

Portfolio Member

Create a Portfolio

Portfolios are a way to organize and manage related
projects.

_images/090_portfolios_1.png
GOVREADY-Q

New Portfolio

Portfolios allow you to
organize and manage related
projects. Members of a
portfolio can access all of its
unrestricted projects.

Title
Portfolio

The title of this Portfolio.

Description

‘ ATO materials|

A description of this Portfolio.

_images/addquestion.png
GOVREADY! The Compan

A myfirstapp ~ Example Module

You have completed the module.

Your Answers

Question Answer

What is your favorite science fiction franchise? ~ Star Trek

Add Question
B |

What You Chose

startrek

_images/app_diagram.png

_images/090_question.png
GOVREADY-Q

A Frontltd ~ ITSystem = Systeminfo = System Info

PROJECT: IT System
What is the FULL name of your IT Sy