
govready-q Documentation
Release 0.8.6

Josh Tauberer, Greg Elin

Mar 19, 2020

CONTENTS:

1 About GovReady-Q 3

2 Deploying GovReady-Q 9

3 Permissions 47

4 Authoring Compliance Apps 51

5 Automation API 95

6 Data Design Guide 101

7 Testing 115

8 Version 0.9.0 119

9 Migration Guide for GovReady-Q v0.8.6 to v0.9.0 137

10 Indices and tables 143

i

ii

govready-q Documentation, Release 0.8.6

Note: This documentation set is part of GovReady v0.9.0. In places, it may still refer to v0.8.6 software features
rather than v0.9.0 features. Thank you for your patience while we update the documentation to apply to the v0.9.0
software. Pull requests are very welcome!

The GovReady-Q Compliance Server is an open source GRC platform for highly automated, user-friendly, self-service
compliance assessments and documentation. It’s perfect for DevSecOps.

GovReady-Q solves the painful compliance bottleneck of needing months to authorize applications that deploy and
redeploy in minutes.

The code is open source, and available on GitHub.

Attention: GovReady-Q is in Beta. Suggested for DevSecOps early adopters needing Compliance-as-Code.

CONTENTS: 1

https://github.com/GovReady/govready-q

govready-q Documentation, Release 0.8.6

2 CONTENTS:

CHAPTER

ONE

ABOUT GOVREADY-Q

1.1 Why GovReady-Q?

Everything about developing and deploying software is accelerating. . . except for compliance. Why? Because:

• maintaining written documentation is too slow,

• pondering how jargon-laden control guidance applies is too hard,

• there’s little reuse, and no compliance documentation supply chain.

To stop needing months to authorize systems that deploy in minutes, assessments and authorizations need to be assem-
bled from vetted, pre-fabricated components sourced from the same software supply chain with which we assemble
applications.

1.2 How GovReady-Q Accelerates Compliance

GovReady accelerates compliance through component-centric guidance, pre-written documentation, and collabora-
tion.

When you use or install GovReady-Q, you gain access to a marketplace of small, self-service compliance apps
written by peers and vendors that map system components to security controls and guide you step-by-step
through assessments and documentation.

3

assets/app_diagram.png

govready-q Documentation, Release 0.8.6

As you and your teammates collaboratively answer questions, the compliance apps work with GovReady-Q to store
your data in a relational database and automagically generate and maintain your compliance artifacts for auditors.

GovReady-Q’s contribution to Compliance-as-Code is the data abstractions for shareable, reusable, and customiz-
able packages—Compliance Apps—to map the relationship between a system component and a set of controls. The
approach is innovative, yet familiar. Compliance Apps:

• enable a hub/marketplace for community contributions;

• extend inherited controls model to each system component;

• enable modern, user-friendly experiences;

• support agile, iterative workflows.

Attention: GovReady-Q software is “Beta” software best suited for early adopters needing faster compliance for
DevSecOps.

1.3 GovReady-Q Philosophy

Compliance is not security. Compliance scales security.

Compliance is a technique humans have developed for enabling trust in systems that are too large and complex for
individuals to assess trustworthiness. Compliance scales participation, attestation and verification of recommended
practices.

• We love security and innovation and believe they enable each other.

• We believe security and compliance are standard, not premium add-ons.

• We view compliance as a by-product of a well-instrumented process.

• We value ease-of-use to increase adoption.

• We value automation to increase consistency.

• We see virtualization and DevOps enabling massive gains in security and compliance.

1.4 GovReady-Q Features

• Easy-to-use, beautiful questionnaires

• Jargon-free approach to security controls and compliance

• Step-by-step guidance through assessments

• Compliance-as-Code approach to creating compliance documentation

• Discuss questions and answers in the tool instead of in email

• Support for rich, clear multi-media and multi-channel communication

• RESTful Automation API to integrate with DevOps pipeline and existing agents

• Innovative, reusable “Compliance Apps” model

• Friendly Open Source license so you can start now

4 Chapter 1. About GovReady-Q

govready-q Documentation, Release 0.8.6

1.5 Using Hosted GovReady-Q

There’s nothing to install. Q.GovReady.com is the hosted version of GovReady-Q.

1. Visit Q.GovReady.com

2. Fill out the form “About your organization” and “About you” to create your account

3. Don’t worry about the Service Levels – everything’s available to everyone during the Beta phase

4. We’ll contact you to help you get started

Attention: We will help you get up and running during the current Beta phase of the project while we make
getting started easier.

The hosted version is an excellent solution if have one project/system you are trying to get through NIST SP 800-53
or NIST SP 800-171 compliance, or you are have just trying to pull together a few specific compliance documents
like your Privacy Policy or Rules of Behavior. The hosted service is operated by GovReady PBC, the company behind
GovReady-Q Compliance Server.

If you have questions about the hosted version, email .

1.5.1 System Architecture

The following diagram depicts a generic, high-level system architecture GovReady-Q deployment including external
ports and protocols. Architectures vary depending on redundancy requirements, use of containers, etc.

1.5. Using Hosted GovReady-Q 5

https://q.govready.com
https://q.govready.com

govready-q Documentation, Release 0.8.6

1.6 Downloading GovReady-Q

Downloading Where
Current Release on Docker https://hub.docker.com/r/govready/govready-q/
Nightly Build on Docker https://hub.docker.com/r/govready/govready-q-nightly/
Clone the GitHub repo https://github.com/govready/govready-q

6 Chapter 1. About GovReady-Q

assets/govready-q_system_architecture.png
https://hub.docker.com/r/govready/govready-q/
https://hub.docker.com/r/govready/govready-q-nightly/
https://github.com/govready/govready-q

govready-q Documentation, Release 0.8.6

1.7 Installing GovReady-Q

Deployment Guide
Installing on Workstations for Development
Deploying with Docker
Deploying on RHEL 7 / CentOS 7
Deploying on Ubuntu

1.8 Finding Compliance Apps

Compliance Apps are GovReady-Q modular, shareable, reusable, data packages mapping the relationship between
system components and security controls. See Understanding Compliance Apps for a more detailed description.

1.8.1 For Hosted Version

When using the Hosted Version of GovReady-Q, GovReady PBC manages the Compliance Apps available to your
organization. Send email to to request changes.

1.8.2 For Local Installs

The docker and downloaded version of GovReady-Q automatically loads a small set of example Compliance Apps.
Compliance Apps are published in collections known as “AppSources” (e.g., repos). Here are a few:

• https://github.com/GovReady/govready-apps-dev

You can can show and hide compliance apps from the Django administration page at main.localhost:8000/
admin/guidedmodules/appsource/.

1.8.3 Creating Your Own Compliance Apps

To get started writing your own Compliance Apps see: Creating Compliance Apps.

1.9 Documentation

The official GovReady-Q documentation is maintained at govready-q.readthedocs.io.

1.10 Support

Commercial support for GovReady-Q is provided by GovReady PBC. Email .

Sign up for Security Notifications email list at GovReady Security Alerts.

1.7. Installing GovReady-Q 7

https://govready-q.readthedocs.io/en/latest/deploy_local_dev.html
https://govready-q.readthedocs.io/en/latest/deploy_docker.html
https://govready-q.readthedocs.io/en/latest/deploy_rhel7_centos7.html
https://govready-q.readthedocs.io/en/latest/deploy_ubuntu.html
Apps.html
https://github.com/GovReady/govready-apps-dev
Authoring.html
https://govready-q.readthedocs.io/
http://eepurl.com/dsi9YL

govready-q Documentation, Release 0.8.6

1.11 Reporting Bugs & Issues

Please file bug reports on our GitHub issue. When reporting a bug, please include as much information as possible.
This includes:

• Install type: Hosted, Local, Docker, etc

• URL

• Action taken

• Expected result

• Actual result

• Screenshot (if relevant)

1.12 License / Credits

This repository is licensed under the GNU GPL v3.

• Emoji icons by http://emojione.com/developers/.

• Generic server icon by Stock Image Folio from Noun Project.

1.13 About GovReady PBC

GovReady PBC is a Public Benefit Corporation whose mission is to lower the cost of innovation in digital services
to citizens. GovReady’s innovative self-service IT compliance tool GovReady-Q was developed as part of an R&D
contract to automate and lower the cost of cyber security compliance from the Department of Homeland Security,
Science and Technology Directorate, Cyber Security Division. GovReady PBC is based in the greater Washington,
DC metro area.

8 Chapter 1. About GovReady-Q

https://github.com/GovReady/govready-q/issues
https://github.com/GovReady/govready-q/blob/master/LICENSE.md
http://emojione.com/developers/
https://thenounproject.com/search/?q=computer&i=870428

CHAPTER

TWO

DEPLOYING GOVREADY-Q

2.1 System Requirements

GovReady-Q is a Python 3.6 and higher, Django 2.x application with a relational database back-end.

2.1.1 Software Requirements

Required Software Packages (partial list)
(GovReady-Q application)
Python 3.6
Django 2.2
Jinja 2.x
uwsgi 2.x
unzip
graphviz
libmagic
pandoc
Wkhtmltopdf
Git 2.x
supervisor

Supported Databases
Postgres 9.4 (psycopg2 2.7.5 adapter)
Mysql 7.6 and higher (mysqlclient 1.3.12 adapter)
SQLite 3.x

Recommended Database
Postgres 9.4 (psycopg2 2.7.5 adapter)

SMTP Mail Server (for sending email notifications and receiving comments via email)
Any SMTP mail server (MTA) supporting STARTTLS connections.

For a more detailed list of software dependencies and requirements see:

• https://github.com/GovReady/govready-q/blob/master/requirements.in

• https://github.com/GovReady/govready-q/blob/master/requirements.txt

9

https://github.com/GovReady/govready-q/blob/master/requirements.in
https://github.com/GovReady/govready-q/blob/master/requirements.txt

govready-q Documentation, Release 0.8.6

• https://github.com/GovReady/govready-q/blob/master/requirements_mysql.in

• https://github.com/GovReady/govready-q/blob/master/requirements_mysql.txt

• https://github.com/GovReady/govready-q/blob/master/Vagrantfile

2.1.2 Hardware Requirements

Minimum Hardware
Single server to host both multi-tenant GovReady-Q application and Database
Linux-compatible hardware
2GB RAM
10 GB storage (for database)

Recommended Hardware
2 servers: 1 for multi-tenant GovReady-Q application; 1 for Database Server
Linux-compatible hardware (64 bit architecture; FIPS-140-2 validated cryptographic module)
8GB RAM for each server
100 GB storage (for database server)

2.2 Installing GovReady-Q

Click one of the tab belows to see quickstart for indicated platform.

Docker

Installing with Docker

Make sure you first install Docker (https://docs.docker.com/engine/installation/) and, if appropriate, grant non-
root users access to run Docker containers (https://docs.docker.com/engine/installation/linux/linux-postinstall/
#manage-docker-as-a-non-root-user) (or else use sudo when invoking Docker below).

Start

Run the docker container in detached mode
docker container run --name govready-q --detach -p 8000:8000 govready/govready-q

Create admin account and organization data
docker container exec -it govready-q first_run

Stop, start container (when needed)
docker container stop govready-q
docker container start govready-q

View logs - useful if site does not appear
docker container logs govready-q

To destroy the container and all user data entered into Q
docker container rm -f govready-q

10 Chapter 2. Deploying GovReady-Q

https://github.com/GovReady/govready-q/blob/master/requirements_mysql.in
https://github.com/GovReady/govready-q/blob/master/requirements_mysql.txt
https://github.com/GovReady/govready-q/blob/master/Vagrantfile
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/linux/linux-postinstall/#manage-docker-as-a-non-root-user
https://docs.docker.com/engine/installation/linux/linux-postinstall/#manage-docker-as-a-non-root-user

govready-q Documentation, Release 0.8.6

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

macOS

Installing on macOS

GovReady-Q calls requires Python 3.6 or higher to run and several Unix packages to provide full functionality. Install
the Homebrew package manager (https://brew.sh) to easily install Unix packages on macOS. Homebrew will install
all packages in your userspace and not change native macOS Python or other libraries.

install Homebrew package manager
/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
→˓master/install)"

Now install Python3 and the required Unix packages.

install dependencies using brew
brew install python3

install other packages:
brew install unzip graphviz pandoc selenium-server-standalone
brew cask install wkhtmltopdf

Installing GovReady-Q

Clone GovReady-Q source code and install.

clone GovReady-Q
git clone https://github.com/govready/govready-q
cd govready-q

install Python 3 packages
pip3 install --user -r requirements.txt

install Bootstrap and other vendor resources locally
./fetch-vendor-resources.sh

Run the final setup commands to initialize a local Sqlite3 database in local/db.sqlite to make sure everything is OK so
far:

run database migrations (sqlite lite database used by default)
python3 manage.py migrate

load a few critical modules
python3 manage.py load_modules

create superuser with initial account
python3 manage.py first_run

2.2. Installing GovReady-Q 11

http://localhost:8000/
https://brew.sh

govready-q Documentation, Release 0.8.6

Start GovReady-Q

run the server
python3 manage.py runserver

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

RHEL/CentOS 7

Installing on RHEL/CentOS 7

Instructions applicable RHEL 7, CentOS 7 and Amazon Linux 2.

GovReady-Q calls requires Python 3.6 or higher to run and several Linux packages to provide full functionality.

if necessary, enable EPEL and IUS repositories
rpm -i https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm https://
→˓rhel7.iuscommunity.org/ius-release.rpm

install dependencies
sudo yum install \
unzip python36-pip python36-devel \
graphviz \
pandoc xorg-x11-server-Xvfb wkhtmltopdf \

optional install gcc to build the uWSGI Python package.
sudo yum install gcc

optional insall of postgress and/or mysql
sudo yum install postgresql mysql-devel

GovReady-Q calls out to git to fetch apps from git repositories, but that requires git version 2 or later because of the
use of the GIT_SSH_COMMAND environment variable. RHEL stock git is version 1. Switch it to version 2+ by
using the IUS package:

if necessary, remove any git currently installed
yum remove git
install git2u
yum install git2u

Installing GovReady-Q

Clone GovReady-Q source code and install.

clone GovReady-Q
git clone https://github.com/govready/govready-q
cd govready-q

install Python 3 packages
pip3 install --user -r requirements.txt

install Bootstrap and other vendor resources locally
./fetch-vendor-resources.sh

12 Chapter 2. Deploying GovReady-Q

http://localhost:8000/

govready-q Documentation, Release 0.8.6

Run the final setup commands to initialize a local Sqlite3 database in local/db.sqlite to make sure everything is OK so
far:

run database migrations (sqlite lite database used by default)
python3 manage.py migrate

load a few critical modules
python3 manage.py load_modules

create superuser with initial account
python3 manage.py first_run

Start GovReady-Q

run the server
python3 manage.py runserver

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

Ubuntu 16.04

Installing on Ubuntu

Instructions provide basic guidance on setting up GovReady-Q on an Ubuntu 16.04 server with Nginx. These com-
mands should be run from the root directory of the GovReady-Q code repository.

GovReady-Q calls requires Python 3.6 or higher to run and several Linux packages to provide full functionality.

upgrade apt-get
apt-get update && apt-get upgrade -y

install dependencies
apt-get install -y \

unzip \
python3 python-virtualenvpython3-pip \
python3-yaml \
nginx uwsgi-plugin-python3supervisor \
memcached \
graphviz

optional install gcc to build the uWSGI Python package.
sudo yum install gcc

optional insall of postgress and/or mysql
apt-get install -y postgresql mysql-devel

2.2. Installing GovReady-Q 13

http://localhost:8000/

govready-q Documentation, Release 0.8.6

Installing GovReady-Q

Clone GovReady-Q source code and install.

clone GovReady-Q
git clone https://github.com/govready/govready-q
cd govready-q

install Python 3 packages
pip3 install --user -r requirements.txt

install Bootstrap and other vendor resources locally
./fetch-vendor-resources.sh

Run the final setup commands to initialize a local Sqlite3 database in local/db.sqlite to make sure everything is OK so
far:

run database migrations (sqlite lite database used by default)
python3 manage.py migrate

load a few critical modules
python3 manage.py load_modules

create superuser with initial account
python3 manage.py first_run

Start GovReady-Q

run the server
python3 manage.py runserver

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

Windows

Installing on Windows (with Docker)

GovReady-Q can only be installed on Windows using Docker.

Make sure you first install Docker (https://docs.docker.com/docker-for-windows/install/).

Start

Run the docker container in detached mode
docker container run --name govready-q --detach -p 8000:8000 govready/govready-q

Create admin account and organization data
docker container exec -it govready-q first_run

Stop, start container
docker container stop govready-q
docker container start govready-q

(continues on next page)

14 Chapter 2. Deploying GovReady-Q

http://localhost:8000/
https://docs.docker.com/docker-for-windows/install/

govready-q Documentation, Release 0.8.6

(continued from previous page)

View logs - useful if site does not appear
docker container logs govready-q

To destroy the container and all user data entered into Q
docker container rm -f govready-q

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

Additional deployment details and configuration options are documented for each platform.

2.2.1 Deploying with Docker

Container Where
Current Release on Docker https://hub.docker.com/r/govready/govready-q/
Release 0.9.0.dev on Docker https://hub.docker.com/r/govready/govready-0.9.0.dev/
Nightly Build on Docker https://hub.docker.com/r/govready/govready-q-nightly/

Quickstart

Docker

Installing with Docker

Make sure you first install Docker (https://docs.docker.com/engine/installation/) and, if appropriate, grant non-
root users access to run Docker containers (https://docs.docker.com/engine/installation/linux/linux-postinstall/
#manage-docker-as-a-non-root-user) (or else use sudo when invoking Docker below).

Start

Run the docker container in detached mode
docker container run --name govready-q --detach -p 8000:8000 govready/govready-q

Create admin account and organization data
docker container exec -it govready-q first_run

Stop, start container (when needed)
docker container stop govready-q
docker container start govready-q

View logs - useful if site does not appear
docker container logs govready-q

To destroy the container and all user data entered into Q
docker container rm -f govready-q

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

2.2. Installing GovReady-Q 15

http://localhost:8000/
https://hub.docker.com/r/govready/govready-q/
https://hub.docker.com/r/govready/govready-q-0.9.0.dev/
https://hub.docker.com/r/govready/govready-q-nightly/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/linux/linux-postinstall/#manage-docker-as-a-non-root-user
https://docs.docker.com/engine/installation/linux/linux-postinstall/#manage-docker-as-a-non-root-user
http://localhost:8000/

govready-q Documentation, Release 0.8.6

Additional Details

Notes and Common Issues

Your GovReady-Q site will not load immediately, as GovReady-Q initializes your database for the first time. Wait for
the site to become available.

Because of HTTP Host header checking, you must use localhost to access the site, or another hostname if config-
ured using the --address option documented below.

If the site does not come up, check the container logs for an error message:

docker container logs govready-q

The GovReady-Q default SQLite database created within a Docker container exists only for the duration of the con-
tainer’s lifetime. The database will persist between docker container stop/docker container start
commands, but when the container is removed from Docker (i.e. using docker container rm) the database
will be destroyed. See the Persistent database section below for connecting to a database outside of the container for
production data.

The default Govready-Q instance cannot send email or receive comment replies until it is configured to use a transac-
tional mail provider like Mailgun – see below.

The default Govready-Q instance is configured to non-debug mode (Django DEBUG=false), which is the recom-
mended setting for a public website. The instance can be set to debug mode at runtime – see below.

Advanced configuration of GovReady-Q inside Docker

For more complex setups, using our run script instead will be easier:

wget https://raw.githubusercontent.com/GovReady/govready-q/master/deployment/docker/
→˓docker_container_run.sh
chmod +x docker_container_run.sh
./docker_container_run.sh

Advanced container options can be set with command-line arguments to our container run script:

./docker_container_run.sh ...GovReady-Q arguments... -- ...Docker arguments...

Changing the hostname and port

The public address (as users see it)

The container will run at localhost:8000 by default, it will only be accessible from the host machine, and because
of HTTP Host header checking you must visit GovReady-Q using the same hostname it is configured to run at (so,
with default settings, visiting 127.0.0.1 instead of localhost will result in an error).

You may change the hostname and port of the GovReady-Q server using:

./docker_container_run.sh --address q.mydomain.com:80

If the Docker container is behind a proxy, then --address specifies the public address that end-users will use to
access GovReady-Q. This may differ from the address and port that the container is accessed at on your organization’s
network, which is set using --bind.

16 Chapter 2. Deploying GovReady-Q

govready-q Documentation, Release 0.8.6

Add --https if end users will access GovReady-Q with https: URLs. This must be done through a proxy that
accepts HTTPS connections and passes the requests using HTTP to the Docker container. See the HTTPS environment
variable, below.

The address that the container is bound to

Use --bind IP:PORT to control how the listening socket is created on the host machine. The default value of
--bind is 127.0.0.1 and the port from --address, or 127.0.0.1:8000 if --address isn’t given. If the
host machine is behind a proxy, use --bind to control the network interface and port that Docker will forward to the
GovReady-Q container.

./docker_container_run.sh --bind 10.0.0.5:6543

Persistent database

In a production environment it is important to have GovReady-Q connect to a persistent database instead of the
database stored inside the container, which will be destroyed when the container is destroyed. There are two methods
for connecting to a persistent database.

Sqlite file

You can use a Sqlite file stored on the host machine:

./docker_container_run.sh --sqlitedb /path/to/govready-q-database.sqlite

You must specify an absolute path. The path is mounted using a Docker bind mount into the container filesystem.

The file must be readable and writable by the container process, which is running as user 1000/group 1000. Although
the container is running as a user isolated from the host environment, filesystem permissions for mounted files are
based on comparing the raw user/group IDs of the file’s owner/group on the host to the raw user/group ID of the
process running in the container. Consider granting user 1000 read/write permission to the database using ACLs:

setfacl -m u:1000:rw /path/to/govready-q-database.sqlite

Of course, do not do this if the host machine has a user 1000 that you do not trust.

Remote database

You can also connect to a database running on a remote system accessible to the Docker container.

For instance, you might run a second Docker container holding a Postgres server.

DBPASSWORD=mysecretpassword
docker container run --name govready-q-db -e POSTGRES_PASSWORD=$DBPASSWORD -d postgres
DBHOST=$(docker container inspect govready-q-db | jq -r .[0].NetworkSettings.
→˓IPAddress)
DBUSER=postgres
DBDATABASE=postgres

(This example uses jq, a JSON parsing tool, to extract the IP address of the database container. You can install jq or
just set DBHOST manually by looking for the IP address in docker container inspect govready-q-db.)

Start the GovReady-Q container with the argument:

2.2. Installing GovReady-Q 17

govready-q Documentation, Release 0.8.6

./docker_container_run.sh --dburl postgres://$DBUSER:$DBPASSWORD@$DBHOST/$DBDATABASE

where $DBHOST is the hostname of the database server, $DBDATABASE is the name of the database, and $DBUSER
and $DBPASSWORD are the credentials for the database.

You can also use a MySQL or MariaDB server using the syntax mysql://USER:PASSWORD@HOST:PORT/NAME.

Configuring email

GovReady-Q sends outbound emails for notifications about invitations and discussions. It also receives inbound emails
— replies to discussion notifications can be used to post discussion comments by email.

To configure outbound email, use:

./docker_container_run.sh --email-host smtp.company.org --email-port 587 --email-user
→˓... --email-pw ... --email-domain q.company.org

--email-domain sets the hostname used in the email address of outbound email. The other arguments set the
SMTP relay server details.

Some of GovReady-Q’s outbound emails can be replied to. When a user replies to a notification of a discussion
comment, the reply’s body is post as a new comment on the discussion. Currently we only support an incoming
notification hook from Mailgun, and it is not yet configurable for the docker deployment. TODO

Container management and other options

Other options that can be passed on the command-line are:

Use --name NAME to specify an alternate name for the container. The default is govready-q.

Use --relaunch to remove an existing container of the same name before launching the new one, if an existing
container of the same name exists. This simply runs docker container rm -f NAME.

Add --debug to start GovReady-Q in DEBUG mode, which enables nicer error messages. Do not use in production.

You can additionally pass parameters to the docker container run command by separating the Docker param-
eters from the GovReady-Q parameters with --, such as:

./docker_container_run.sh --address q.mydomain.com:80 -- -e VAR=VALUE

Adding and developing compliance apps

If you are using the Docker image to develop your own compliance apps, then you will need to bind-mount a directory
on your (host) system as a directory within the container so that the container can see your app YAML files. To do so,
start the container with the additional command-line argument:

--appsdevdir /path/to/apps

The directory may be empty but it must exist, and you must specify it as an absolute path (due to a Docker limitation).

The directory and its contents must also be readable — and writable, if you intend to use GovReady-Q’s authoring
tools — by the container process. The container process is running as user 1000/group 1000. Although the container is
running as a user isolated from the host environment, filesystem permissions for mounted files are based on comparing
the raw user/group IDs of the file’s owner/group on the host to the raw user/group ID of the process running in the

18 Chapter 2. Deploying GovReady-Q

https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/

govready-q Documentation, Release 0.8.6

container. Consider granting user 1000 read/write permission to the files, plus execute (i.e. browse) permission to the
directories, in the mounted path using ACLs:

setfacl -R -m u:1000:rwX /path/to/apps

Of course, do not do this if the host machine has a user 1000 that you do not trust.

If the directory is not empty, it should have subdirectories for each of your apps. For instance, you would have a
YAML file at /path/to/apps/my_app/app.yaml.

To create your first app, you can run

docker container exec -it govready-q python3.6 manage.py compliance_app host your_new_
→˓app_name

Replace your_new_app_namewith an app identifier, which may contain letters, numbers, dashes, and underscores.
host is always just host — don’t change that.

If your new app does not appear in the compliance apps catalog, you may need to force the app catalog cache to be
cleared by restarting the container:

docker container restart govready-q

Logs for Debugging

The container’s console shows the output of container’s start-up commands including database migrations and process
startup. The container’s console log can be accessed with

docker container logs govready-q

GovReady-Q application logs can be found in /var/log within the container to track status and assist with debug-
ging. These files contain access logs and other program output.

• /var/log/application-stderr.log - GovReady-Q application standard error

• /var/log/application-stdout.log - GovReady-Q application standard out

• /var/log/notificationemails-stderr.log - GovReady-Q email notifications standard error

• /var/log/notificationemails-stdout.log - GovReady-Q email notifications standard error

• /var/log/supervisord.log - Supervisor daemon

Debugging “Internal Server Error” Messages

A special management command can be used to see the application log files to debug unhandled “Internal Server
Error” (HTTP code 500) messages displayed in the browser to end users

docker container exec govready-q tail_logs
Replace "govready-q" with name of your container or use container id

tail_logs takes the same arguments as Unix tail. For instance, add -n 1000 to see the most recent 1,000 log
lines, or add -f to continue to output the logs as the log files grow.

most recent 200 lines of logs
docker container exec govready-q tail_logs -n 200

real-time display of logs
docker container exec govready-q tail_logs -f

2.2. Installing GovReady-Q 19

govready-q Documentation, Release 0.8.6

The log files can also be accessed by mounting /var/log with a Docker bind-mount or as a volume (and that’s the
only way to see the logs if docker container exec cannot be used in your environment).

Production deployment of the Docker container

The GovReady-Q container runs several processes, including an HTTP/application server and a background process
for sending notification emails.

Secure deployments

The container’s processes run exclusively as a non-root user with UID 1000 and GID 1000.

The container may be run with a read-only root filesystem (Docker’s --read-only argument) so long as /run,
/tmp, and /var/log are writable. When the --dburl argument is given to our docker_container_run.sh
script, a read-only filesystem is activated using:

--read-only --tmpfs /run --tmpfs /tmp --tmpfs /var/log

The three directories can be made writable either by being mounted as tmpfs temporary filesystems, as above, or using
a bind mount or a Docker volume. In production environments where the container is launched without our script, it
is recommended to use tempfs for /run and /tmp and to mount /var/log to a volume.

Other management commands

See the uWSGI application server JSON process stats:

docker container exec govready-q uwsgi_stats

Updating to a new release of GovReady-Q

Periodically there will be a new release of GovReady-Q as an new image on the Docker Hub. Updating is easy by
re-running the same commands again.

1) There may be an update to docker_container_run.sh. Since this script is not a part of the Docker image,
you will need to get it again from this GitHub repository.

2) You should be using a persistent database as described above. When using a persistent database, it is safe to
destroy the govready-q Docker container and start a new one to deploy an update.

3) Use the same arguments to docker_container_run.sh as when you started the container the last time,
but add --relaunch to kill the previous container — you cannot have two containers with the same name or
two containers listening on the same port. (You can change the name and port, as described above, if you would
like to keep the old container running.)

4) When the new container starts, database migrations will be applied, if applicable.

For example:

Update docker_container_run.sh, replacing the old script (with -O).
wget -O docker_container_run.sh \

https://raw.githubusercontent.com/GovReady/govready-q/master/deployment/docker/
→˓docker_container_run.sh
chmod +x docker_container_run.sh

(continues on next page)

20 Chapter 2. Deploying GovReady-Q

http://uwsgi-docs.readthedocs.io/

govready-q Documentation, Release 0.8.6

(continued from previous page)

Remove old container and launch updated container.
./docker_container_run.sh --relaunch [your same command-line arguments]

Environment variables for launching the container without our run script

The following environment variables are used to configure the container when launching GovReady-Q using docker
run or a container service (i.e., not when using our docker_container_run.sh helper script).

HOST - The domain name that GovReady-Q will be accessible at by end users. (Default: localhost)

PORT - The port that GovReady-Q will be accessed at by end users, typically either 80 (no HTTPS) or 443 (HTTPS).
(Default: 8080)

HTTPS - Set to true if GovReady-Q will be accessed by end users at an https: address. This must be done through a
proxy that accepts HTTPS connections and passes the requests using HTTP to the Docker container. The proxy must
set the X-Forwarded-Proto: https header. It is also permissible for the proxy to forward HTTP requests,
and those requests will be automatically redirected to the https: URL. (Default: false)

DEBUG - Set to true to run in Django debug mode. (Default: false)

DBURL - Set to a database connection string as described in https://github.com/kennethreitz/dj-database-url. We rec-
ommend using PostgreSQL using a TLS server certificate, e.g. postgresql://user:password@dbhost/
govready_q?sslmode=verify-full&sslrootcert=/path/to/pgsql.crt (although you’ll have to
figure out how to get the server certificate accessible via the container filesystem). (Default: Not set, which means
using a Sqlite database stored in the container at /usr/src/app/local/database.sqlite, which will be
ephemeral if the path is not mounted to the host or a Docker volume.)

EMAIL_HOST, EMAIL_PORT, EMAIL_USER, EMAIL_PW, and EMAIL_DOMAIN - For enabling outbound email.
The host, port, username, and password settings specify a TLS-enabled SMTP server. EMAIL_DOMAIN is the domain
name to use in outbound mail. (Default: Not set and outbound emails are dumped to logs for debugging.) To test
the email configuration from the command-line, you can run docker container exec -it govready-q
python3.6 manage.py sendtestemail you@example.com. If email is configured, you should not see
any output and you should get a test email.

FIRST_RUN - If set to 1, an administrator user will be created when the container launches and a randomly generated
password will be given to the user and printed on the console, which will be visible in the container’s logs. An
organization named main will also be created.

PROCESSES - The number of concurrent requests that can be handled by the container. (Default: 4)

SECRET_KEY - The Django SECRET_KEY for session management. (Try this tool to generate one.)

ADMINS - The Django ADMINS setting, passed as raw JSON. Example: [["Admin Name 1",
"admin1@example.com"], ["Admin Name 2", "admin2@example.com"]]. (Default: Empty list,
i.e. [].)

SYSLOG - The host and port of a syslog-compatible log message sink. (Default: None.)

MAILGUN_API_KEY - An API key for Mailgun which is used to validate incoming webhook requests from Mailgun
when an incoming email is received, when Mailgun is configured to handle incoming mail. (Default: None)

BRANDING (downstream packaging only): You may override the templates and stylesheets that are used for
GovReady-Q’s branding by setting this environment variable to the name of an installed Django app Python mod-
ule (i.e. created using manage.py startapp) that holds templates and static files. No such app is provided in
the GovReady-Q published Docker image, so this variable can only be used by downstream image maintainers. See
Applying Custom Organization Branding.

2.2. Installing GovReady-Q 21

https://github.com/kennethreitz/dj-database-url
https://www.postgresql.org/docs/9.1/static/libpq-ssl.html
https://docs.djangoproject.com/en/2.0/ref/settings/#secret-key
https://www.miniwebtool.com/django-secret-key-generator/
https://docs.djangoproject.com/en/2.0/ref/settings/#admins
CustomBranding.html

govready-q Documentation, Release 0.8.6

PROXY_AUTHENTICATION_USER_HEADER and PROXY_AUTHENTICATION_EMAIL_HEADER: GovReady-Q
can be deployed behind a reverse proxy that authenticates users and passes the authenticated user’s username and email
address in HTTP headers. These environment variables correspond to the settings documented in Enterprise Login.

Running tests

GovReady-Q’s unit tests can be run within the Docker container. After building the image:

docker container run --rm -it govready/govready-q:latest python3.6 manage.py test

Or once a Docker container running GovReady-Q is started (and named govready-q), use exec to begin a shell
within the container, and then launch the unit tests:

docker container exec -it govready-q bash
python3.6 manage.py test guidedmodules

The functional tests run a headless Chromium web browser session. We welcome assistance figuring out how to
get this to work in our Docker container. Chromium’s process isolation capabilities seem to require special system
privileges (i.e. docker run --privileged --cap-add SYS_ADMIN) or Chromium command-line flags
(--no-sandbox --disable-gpu).

yum install -y chromium chromedriver
python3.6 manage.py test
...
selenium.common.exceptions.WebDriverException: Message: unknown error: Chrome failed
→˓to start: exited abnormally

Populating sample data for manual testing and verification

If you wish to add sample data for testing purposes to your GovReady-Q image, run the following command (after
first_run has completed):

docker container exec -it govready-q add_data --non-interactive

This will run a quickstart command to generate data in your GovReady-Q instance, as described in more detail in the
Testing section of this documentation.

2.2.2 Deploying on macOS

Quickstart

macOS

22 Chapter 2. Deploying GovReady-Q

Environment.html#proxy-authentication-server
Test.html#populating-sample-data-for-manual-testing-and-verification

govready-q Documentation, Release 0.8.6

Installing on macOS

GovReady-Q calls requires Python 3.6 or higher to run and several Unix packages to provide full functionality. Install
the Homebrew package manager (https://brew.sh) to easily install Unix packages on macOS. Homebrew will install
all packages in your userspace and not change native macOS Python or other libraries.

install Homebrew package manager
/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
→˓master/install)"

Now install Python3 and the required Unix packages.

install dependencies using brew
brew install python3

install other packages:
brew install unzip graphviz pandoc selenium-server-standalone magic libmagic
brew cask install wkhtmltopdf

Installing GovReady-Q

Clone GovReady-Q source code and install.

clone GovReady-Q
git clone https://github.com/govready/govready-q
cd govready-q

install Python 3 packages
pip3 install --user -r requirements.txt

install Bootstrap and other vendor resources locally
./fetch-vendor-resources.sh

Run the final setup commands to initialize a local Sqlite3 database in local/db.sqlite to make sure everything is OK so
far:

run database migrations (sqlite lite database used by default)
python3 manage.py migrate

load a few critical modules
python3 manage.py load_modules

create superuser with initial account
python3 manage.py first_run

2.2. Installing GovReady-Q 23

https://brew.sh

govready-q Documentation, Release 0.8.6

Start GovReady-Q

run the server
python3 manage.py runserver

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

Additional Details

We welcome assistance with installing GovReady-Q natively on MacOS.

2.2.3 Deploying on RHEL 7 / CentOS 7 / Amazon Linux 2

Quickstart

RHEL/CentOS 7

Installing on RHEL/CentOS 7

Instructions applicable RHEL 7, CentOS 7 and Amazon Linux 2.

GovReady-Q calls requires Python 3.6 or higher to run and several Linux packages to provide full functionality.

if necessary, enable EPEL and IUS repositories
rpm -i https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm https://
→˓rhel7.iuscommunity.org/ius-release.rpm

install dependencies
sudo yum install \
unzip python36-pip python36-devel \
graphviz \
pandoc xorg-x11-server-Xvfb wkhtmltopdf \

optional install gcc to build the uWSGI Python package.
sudo yum install gcc

optional insall of postgress and/or mysql
sudo yum install postgresql mysql-devel

GovReady-Q calls out to git to fetch apps from git repositories, but that requires git version 2 or later because of the
use of the GIT_SSH_COMMAND environment variable. RHEL stock git is version 1. Switch it to version 2+ by
using the IUS package:

if necessary, remove any git currently installed
yum remove git
install git2u
yum install git2u

24 Chapter 2. Deploying GovReady-Q

http://localhost:8000/

govready-q Documentation, Release 0.8.6

Installing GovReady-Q

Clone GovReady-Q source code and install.

clone GovReady-Q
git clone https://github.com/govready/govready-q
cd govready-q

install Python 3 packages
pip3 install --user -r requirements.txt

install Bootstrap and other vendor resources locally
./fetch-vendor-resources.sh

Run the final setup commands to initialize a local Sqlite3 database in local/db.sqlite to make sure everything is OK so
far:

run database migrations (sqlite lite database used by default)
python3 manage.py migrate

load a few critical modules
python3 manage.py load_modules

create superuser with initial account
python3 manage.py first_run

Start GovReady-Q

run the server
python3 manage.py runserver

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

Additional Details

Deployment utilities

Sample apache.conf, superviser.ini, and update.sh files can be found in the source code directory
deployment/rhel.

Creating a UNIX user named govready-q

You may find it useful to create a user specifically for GovReady-Q. Do this before installing GovReady-Q.

Create user.
useradd govready-q -c "govready-q"

Change permissions so that Apache can read static files.
chmod a+rx /home/govready-q

2.2. Installing GovReady-Q 25

http://localhost:8000/

govready-q Documentation, Release 0.8.6

Upgrading pip

Upgrade pip because the RHEL package version is out of date (we need >=9.1 to properly process hashes in
requirements.txt)

pip3 install --upgrade pip

Installing as UNIX user named govready-q

Switch to the govready-q user and install Q:

sudo su govready-q
cd
git clone https://github.com/govready/govready-q
cd govready-q
git checkout {choose the tag for the current released version}
pip3 install --user -r requirements.txt
./fetch-vendor-resources.sh

Installing drivers for Postgres, MySQL

if you intend to use optional configurations, such as the MySQL adapter, you
may need to run additional `pip3 install` commands, such as:
pip3 install --user -r requirements_mysql.txt

2.2.4 Deploying on Ubuntu

Quickstart

Ubuntu 16.04

Installing on Ubuntu

Instructions provide basic guidance on setting up GovReady-Q on an Ubuntu 16.04 server with Nginx. These com-
mands should be run from the root directory of the GovReady-Q code repository.

GovReady-Q calls requires Python 3.6 or higher to run and several Linux packages to provide full functionality.

upgrade apt-get
apt-get update && apt-get upgrade -y

install dependencies
apt-get install -y \

unzip \
python3 python-virtualenvpython3-pip \
python3-yaml \
nginx uwsgi-plugin-python3supervisor \
memcached \
graphviz

(continues on next page)

26 Chapter 2. Deploying GovReady-Q

govready-q Documentation, Release 0.8.6

(continued from previous page)

optional install gcc to build the uWSGI Python package.
sudo yum install gcc

optional insall of postgress and/or mysql
apt-get install -y postgresql mysql-devel

Installing GovReady-Q

Clone GovReady-Q source code and install.

clone GovReady-Q
git clone https://github.com/govready/govready-q
cd govready-q

install Python 3 packages
pip3 install --user -r requirements.txt

install Bootstrap and other vendor resources locally
./fetch-vendor-resources.sh

Run the final setup commands to initialize a local Sqlite3 database in local/db.sqlite to make sure everything is OK so
far:

run database migrations (sqlite lite database used by default)
python3 manage.py migrate

load a few critical modules
python3 manage.py load_modules

create superuser with initial account
python3 manage.py first_run

Start GovReady-Q

run the server
python3 manage.py runserver

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

Additional Details

Deployment utilities

Sample apache.conf, superviser.ini, and update.sh files can be found in the source code directory
deployment/ubuntu.

2.2. Installing GovReady-Q 27

http://localhost:8000/

govready-q Documentation, Release 0.8.6

Creating a UNIX user named govready-q

You may find it useful to create a user specifically for GovReady-Q. Do this before installing GovReady-Q.

create user
useradd govready-q -c "govready-q"

change permissions so that Apache can read static files.
chmod a+rx /home/govready-q

change to govready-q user
sudo su govready-q

Installing drivers for Postgres, MySQL

if you intend to use optional configurations, such as the MySQL adapter, you
may need to run additional `pip3 install` commands, such as:
pip3 install --user -r requirements_mysql.txt

local/environment.json

Configure GovReady-Q by creating a file in local/environment.json with the following content:

{
"debug": false,
"admins": [["Name", "email@domain.com"], ...],
"host": "q.<yourdomain>.com",
"https": true,
"secret-key": "something random here",
"static": "/home/user/public_html"

}

You can use Django Secret Key Generator to make a secret-key value.

Prepare static files:

mkdir -p /home/user/public_html/static
python3 manage.py collectstatic --noinput

Set up supervisor to run the uwsgi daemon:

ln -sf `pwd`/deployment/ubuntu/supervisor.conf /etc/supervisor/conf.d/q.govready.com.
→˓conf
service supervisor restart

28 Chapter 2. Deploying GovReady-Q

https://www.miniwebtool.com/django-secret-key-generator/

govready-q Documentation, Release 0.8.6

2.2.5 Deploying on Windows (with Docker)

Quickstart

Windows

Installing on Windows (with Docker)

GovReady-Q can only be installed on Windows using Docker.

Make sure you first install Docker (https://docs.docker.com/docker-for-windows/install/).

Start

Run the docker container in detached mode
docker container run --name govready-q --detach -p 8000:8000 govready/govready-q

Create admin account and organization data
docker container exec -it govready-q first_run

Stop, start container
docker container stop govready-q
docker container start govready-q

View logs - useful if site does not appear
docker container logs govready-q

To destroy the container and all user data entered into Q
docker container rm -f govready-q

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

Additional Details

We welcome assistance with installing GovReady-Q natively on Windows.

2.3 Deploying GovReady-Q in Production environments

These instructions assume that GovReady-Q is installed by the user govready-q, in the directory /home/
govready-q/govready-q/.

To verify that this is the case, run the following command, and check whether GovReady-Q responds to HTTP requests
(on localhost:8000 by default).

cd /home/govready-q/govready-q/ && python3 manage.py runserver

If GovReady-Q is installed successfully, proceed with the rest of these configuration instructions. If it doesn’t, see
OS-specific install instructions.

2.3. Deploying GovReady-Q in Production environments 29

https://docs.docker.com/docker-for-windows/install/
http://localhost:8000/
deploy_all.html

govready-q Documentation, Release 0.8.6

2.3.1 Set basic configuration variables

Create a file named local/environment.json (ensure it is not world-readable) that contains site configuration
in JSON, with some recommended settings:

{
"debug": false,
"host": "webserver.hostname.com",
"https": true,
"secret-key": "generate random string using e.g. https://www.miniwebtool.com/django-

→˓secret-key-generator/",
"static": "/home/govready-q/public_html/static"

}

Because of host header checking, to test the site again using python3 manage.py runserver you will need to
visit it using webserver.hostname.com and not localhost. (Be sure to replace webserver.hostname.
com with your hostname.)

Remember to Define Your host

The DisallowedHost. . . Invalid HTTP_HOST header. . . You may need to add ‘:raw-html-m2r:`<your domain
name>`’ to ALLOWED_HOSTS is a common error received when first trying to get GovReady-Q running on a
server at a specific domain. The error indicates the domain you are trying to visit is not white listed in Django’s
special ALLOWED_HOST variable.

For security, Django requires white listing your server’s domain(s) in the ALLOWED_HOST variable. Ordinarily this is
hardcoded into the settings.py file. GovReady-Q allows the ALLOWED_HOST to be set by the host environment
settings so the values can be passed at runtime.

• host must be defined, or GovReady-Q will default value to localhost

2.3.2 Setting up the Database Server

For production deployment, it is recommended to use dedicated database software, rather than SQLite.

The recommended database is PostgreSQL - see instructions on setting up Q with PostgreSQL

2.3.3 Setting up a Webserver

It’s recommended to run a dedicated webserver software, such as Apache or Nginx, as a reverse proxy in front of the
Q application (running through uWSGI). To read how to do this, see instructions on setting up Q with a reverse proxy
webserver.

2.3.4 Creating the First User

Create the initial user and a “main” organization using:

python3 manage.py first_run

You should now be able to log into GovReady-Q using the user created in this section.

You can also use the Django admin to create organizations.

30 Chapter 2. Deploying GovReady-Q

configure_db.html
configure_webserver.html
configure_webserver.html

govready-q Documentation, Release 0.8.6

2.3.5 Other Configuration Settings

Set up email by adding to local/environment.json:

"admins": [["Your Name", "you@company.com"]],
"email": {

"host": "smtp.server.com", "port": "587", "user": "...", "pw": "....",
"domain": "webserver.hostname.com"

},
"mailgun_api_key": "...",

2.3.6 Updating Deployment

When there are changes to the GovReady-Q software, pull new sources and restart processes with:

replace $DISTRO with an appropriate value.
Currently-supported options include "rhel" and "ubuntu"
sudo -iu govready-q /home/govready-q/govready-q/deployment/$DISTRO/update.sh

As root, you can also restart just the Python/Django process:

sudo supervisorctl restart all

But this won’t do a full update so don’t normally do that (it won’t restart the separate notifications process or generate
static assets, etc.).

2.4 Deploying GovReady-Q for Development

This page provides additional tips for installing and run GovReady-Q in a mode suitable for making and testing
changes to the software (i.e., in a Dev environment).

2.4.1 Quickstart

For local development, there is a quickstart script available to speed up environment setup. After installing system
requirements through your package manager, run the following four commands in order to set up GovReady-Q in a
new directory:

git clone https://github.com/govready/govready-q
cd govready-q
virtualenv -p python3 env
./quickstart.sh

This will set up a local/environment.json file suitable for a dev environment; set up local dependencies; and
run the assorted initial manage.py commands (migrate, load_modules, first_run, etc.). Additionally, it can
run common post-installation steps, based on user input.

The quickstart.sh script is set up to take user input, and is expected to be run interactively.

2.4. Deploying GovReady-Q for Development 31

https://govready-q.readthedocs.io/en/latest/requirements.html#system-requirements
https://govready-q.readthedocs.io/en/latest/requirements.html#system-requirements

govready-q Documentation, Release 0.8.6

2.4.2 Creating local/environment.json file

When you first run GovReady-Q with python manage.py runserver, you’ll be prompted to copy some JSON
data into a file at local/environment.json like this:

{
"debug": true,
"host": "localhost:8000",
"https": false,
"secret-key": "...something here..."

}

This file is important for persisting login sessions, and you can provide other Q settings in this file.

2.4.3 Invitations on local systems

You will probably want to try the invite feature at some point. The debug server is configured to dump all outbound
emails to the console. So if you “invite” others to join you within the application, you’ll need to go to the console to
get the invitation acceptance link.

2.4.4 Updating the source code

To update the source code from this repository you can git pull. You then may need to re-run some of the setup
commands:

if you set up virtualenv
git pull
source env/bin/activate
pip3 install -r requirements.txt
./fetch-vendor-resources.sh
python3 manage.py migrate
python3 manage.py load_modules

if you did NOT set up virtualenv
git pull
pip3 install --user -r requirements.txt
./fetch-vendor-resources.sh
python3 manage.py migrate
python3 manage.py load_modules

2.5 Setting up a Database for Production Workloads

The preferred production database for Q is PostgreSQL, but MySQL/MariaDB is also supported.

SQLite is supported in development environments, but not recommended for production use.

32 Chapter 2. Deploying GovReady-Q

govready-q Documentation, Release 0.8.6

2.5.1 Setting Up Postgres

These instructions assume a separate database server and webapp server.

On the database server

On the database server, install Postgres. If using RHEL, CentOS, or similar:

yum install postgresql-server postgresql-contrib
postgresql-setup initdb

In /var/lib/pgsql/data/postgresql.conf, enable TLS connections by changing the ssl option to

ssl = on

and enable remote connections by binding to all interfaces:

listen_addresses = '*'

Enable remote connections to the database only from the webapp server and only encrypted with TLS by editing /
var/lib/pgsql/data/pg_hba.conf and adding the line (replacing the hostname with the hostname of the Q
webapp server):

hostssl all all webserver.hostname.com md5

Generate a self-signed certificate (replace db.govready-q.internal with the database server’s hostname if
possible):

openssl req -new -newkey rsa:2048 -days 365 -nodes -x509 -keyout /var/lib/pgsql/data/
→˓server.key -out /var/lib/pgsql/data/server.crt -subj '/CN=db.govready-q.internal'
chmod 600 /var/lib/pgsql/data/server.{key,crt}
chown postgres.postgres /var/lib/pgsql/data/server.{key,crt}

Copy the certificate to the webapp server so that the webapp server can make trusted connections to the database
server:

cat /var/lib/pgsql/data/server.crt
place on webapp server at /home/govready-q/pgsql.crt

Then restart the database:

service postgresql restart

Then set up the user and database (both named govready_q):

sudo -iu postgres createuser -P govready_q
paste a long random password

sudo -iu postgres createdb govready_q

Postgres’s default permissions automatically grant users access to a database of the same name.

And if necessary, open the Postgres port:

firewall-cmd --zone=public --add-port=5432/tcp --permanent
firewall-cmd --reload

2.5. Setting up a Database for Production Workloads 33

govready-q Documentation, Release 0.8.6

On the webapp server

On the webapp server, now check that secure connections can be made:

psql "postgresql://govready_q@dbserver.hostname.com/govready_q?sslmode=verify-full&
→˓sslrootcert=/home/govready-q/pgsql.crt"

(It should fail if the TLS certificate file is not provided, if sslmode is set to disable, if a different user or database is
given, or if the wrong password is given.)

Then in our GovReady-Q local/environment.json file, configure the database (replace
THEPASSWORDHERE) by setting the following key:

"db": "postgresql://govready_q:THEPASSWORDHERE@dbserver.hostname.com/govready_q?
→˓sslmode=verify-full&sslrootcert=/home/govready-q/pgsql.crt",

Then initialize the database content:

python3 manage.py migrate
python3 manage.py load_modules

And generate static files:

python3 manage.py collectstatic

2.6 Configuring a Reverse Proxy Webserver for Production Use

2.6.1 Setting Up Apache & uWSGI

Install Apache 2.x with SSL (back to being root):

yum install httpd mod_ssl

Copy the Apache config into place:

cp /home/govready-q/govready-q/deployment/rhel/apache.conf /etc/httpd/conf.d/govready-
→˓q.conf

And then edit the file replacing q.govready.com and *.govready.com with your hostnames.

If you don’t have a TLS certificate ready to use, create a self-signed certificate (replacing webserver.hostname.
com with your hostname):

openssl req -new -newkey rsa:2048 -days 365 -nodes -x509 -keyout /home/govready-q/ssl_
→˓certificate.key -out /home/govready-q/ssl_certificate.crt -subj '/CN=webserver.
→˓hostname.com'
chmod 600 /home/govready-q/ssl_certificate.{key,crt}
chown apache.apache /home/govready-q/ssl_certificate.{key,crt}

If SELinux is enabled (sestatus shows SELinux status: enabled), grant the Apache process access to
these files as well as the site’s static files:

chcon -v -R --type=httpd_sys_content_t /home/govready-q/govready-q/deployment/rhel/
→˓apache.conf /home/govready-q/ssl_certificate.{key,crt} /home/govready-q/public_html

34 Chapter 2. Deploying GovReady-Q

govready-q Documentation, Release 0.8.6

and grant Apache permission to make network connections so that it can connect to the Python/uwsgi backend running
GovReady-Q:

setsebool httpd_can_network_connect true

Install supervisor which will keep the Python/Django process running and symlink our supervisor config into
place:

yum install supervisor
ln -s /home/govready-q/govready-q/deployment/rhel/supervisor.ini /etc/supervisord.d/
→˓govready-q.ini

Restart services:

service supervisord restart
service httpd restart

And if necessary open the web ports:

firewall-cmd --zone=public --add-port=80/tcp --permanent
firewall-cmd --zone=public --add-port=443/tcp --permanent
firewall-cmd --reload

GovReady-Q should now be running and accessible at your domain name. Follow the instructions in the main
README.md for creating your first organization.

Setting up an HTTPS Certificate

The instructions above created a self-signed certificate to get the website up and running. To use Let’s Encrypt to
automatically provision a real certificate, install and run certbot:

yum install -y python-certbot-apache
certbot --apache -d webserver.hostname.com
and follow the prompts

Then set it to automatically renew certificates as needed:

edit root's crontab
crontab -e

insert at end:
30 2 * * * /usr/bin/certbot renew >> /var/log/le-renew.log

2.6.2 Setting up Nginx

Configure nginx to use nginx.conf in the govready-q directory:

Turn off nginx's default website.
rm -f /etc/nginx/sites-enabled/default

Put in our nginx site config.
ln -sf /home/govready-q/govready-q/deployment/ubuntu/nginx.conf /etc/nginx/sites-
→˓enabled/yourdomain.com

service nginx restart

2.6. Configuring a Reverse Proxy Webserver for Production Use 35

https://github.com/GovReady/govready-q/blob/master/README.md
https://github.com/GovReady/govready-q/blob/master/README.md

govready-q Documentation, Release 0.8.6

The nginx conf file assumes a certificate chain and private key are present at /etc/ssl/local/
ssl_certificate.crt/key.

2.7 Multi-Container GovReady-Q and NGINX via Docker Compose

2.7.1 Overview

This directory contains configuration files that run two Docker containers, one for GovReady-Q and the other for
NGINX, as a multi-container app. NGINX is used in a reverse proxy configuration, to handle incoming HTTP and
HTTPS requests, which it then passes to GovReady-Q.

Use Docker Compose to manage the multi-container app.

Docker Compose commands are similar to, but different from, regular Docker commands. Read the Docker Compose
docs for more details.

2.7.2 Set Up A Docker Host

Workstation

Install Docker and Docker Compose on your workstation.

• On Mac and Windows, Docker Compose is included as part of the Docker install.

• On Linux, after installing Docker, install Docker Compose. Also, you may want to grant non-root users access
to run Docker containers.

Docker Machine

Docker Machine can be used to set up Docker host on either a local or cloud server. Once you have configured your
shell to connect to a Docker host set up by Docker Machine, the Docker Compose commands you need to use will be
the same as if you were using the Docker engine running on your workstation as the Docker host.

2.7.3 Get This Kit

Get the files by cloning the GovReady-Q repository.

git clone https://github.com/GovReady/govready-q.git
cd govready-q/deployment/docker-compose-nginx/

Make sure you are in the ``docker-compose-nginx`` directory.

Any docker-compose commands will need the docker-compose.yml file to know which containers to operate
on.

36 Chapter 2. Deploying GovReady-Q

https://docs.docker.com/compose/
https://docs.docker.com/install/
https://docs.docker.com/compose/install/#install-compose
https://docs.docker.com/engine/installation/linux/linux-postinstall/#manage-docker-as-a-non-root-user
https://docs.docker.com/engine/installation/linux/linux-postinstall/#manage-docker-as-a-non-root-user
https://docs.docker.com/machine/

govready-q Documentation, Release 0.8.6

2.7.4 SSL/TLS Certificates for HTTPS

There are self-signed certs including in the nginx directory. They are copied into the nginx container for nginx
to refer to.

Self-signed certs are sufficient to allow GovReady-Q and NGINX to work together with your browser. However, you
will get a security exception notice from your browser, and you will have to approve the “unsafe” exception to proceed.

To use real certs issued against a CA your browser will recognize, you can replace the cert.pem and key.pem files
and issue the docker-compose build file, or you can mount a data volume with your certs in it to /etc/pki/
tls/certs/ .

Later versions of this project may include more documentation about the volume method, or other ways to include
certs, such as Let’s Encrypt.

2.7.5 Build Images

You need to build images whenever you make changes to the Dockerfiles or nginx config file. If you don’t make
changes, though, the command in the next section will automatically build the images.

To build the images:

docker-compose build

2.7.6 Run GovReady-Q + NGINX Multi-container App

To start the containers:

docker-compose up -d

Using the -d detaches the containers and runs them in the background.

If you prefer, you can omit -d, and then output will be printed to your console window. If you hit ^C, the containers
will shut down gracefully. If you hit ^C^C they will be terminated immediately.

Two containers will be created, one for each “service” (as they’re called in Docker Compose).

Docker Compose gives these containers names like docker-compose-nginx_govready-q_1 and
docker-compose-nginx_nginx_1. These are three-part names, with the parts separated by underscores.
docker-compose-nginx comes from the name of this project (the directory it’s in). The second element is
the service name (govready-q or nginx). The third element is a serial number (ascending from 1) for multiple
instances of the same service. The docker-compose.yml file here only specifies one instance, so the number will
always be 1.

You can check the status of the containers:

docker-compose ps

2.7. Multi-Container GovReady-Q and NGINX via Docker Compose 37

https://letsencrypt.org/

govready-q Documentation, Release 0.8.6

2.7.7 Specify Parameters

Before starting the containers, you can specify which GovReady-Q image to use, which database host to use, and the
hostname of the Docker host. It’s important to specify the correct hostname if you are using real TLS certs.

Set these environment variables (sample values provided, replace with your own values):

export GOVREADY_Q_HOST=ec2-nnn-nnn-nnn-nnn.us-east-1.compute.amazonaws.com
export GOVREADY_Q_DBURL=postgres://govready_q:my_private_password@grq-002.
→˓cog63arfw9bib.us-east-1.rds.amazonaws.com/govready_q
export GOVREADY_Q_IMAGENAME=govready/govready-q-0.9.0

After setting the variables, continue with the “Run GovReady-Q + NGINX Multi-container App” section above.

If you don’t set enviroment variables, these defaults are used:

export GOVREADY_Q_HOST=test.example.com
export GOVREADY_Q_DBURL=
export GOVREADY_Q_IMAGENAME=govready/govready-q

When no DBURL is specified, GovReady-Q uses an internal sqlite database.

2.7.8 Check Logs From A Container

Check the logs by specifying the service name:

docker-compose logs govready-q

docker-compose logs nginx

2.7.9 GovReady-Q Is Up

GovReady-Q will boot up, and be ready to answer web requests in 20-30 seconds.

It will answer HTTP on the standard port, 80, and HTTPS on the standard port, 443.

Visit https://localhost/. (Or http://localhost, which will be redirected to https by nginx.)

The default hostname used for this project is test.example.com. To check it, put this entry in your /etc/hosts
file:

127.0.0.1 test.example.com

When you have /etc/hosts set up, visit https://test.example.com/

2.7.10 Execute A Script In A Container

You can exec a script inside one of the containers by specifying the service name. Unlike normal docker, you do not
specify -it to make the exec interactive.

Here we are executing the first_run script inside the govready-q service/container.

docker-compose exec govready-q first_run

38 Chapter 2. Deploying GovReady-Q

https://localhost/
https://test.example.com/

govready-q Documentation, Release 0.8.6

2.7.11 Stop And Remove Containers

To stop and remove containers:

docker-compose down

2.8 Environment Settings

2.8.1 Available Configuration Settings

The following environment variables are used to configure your GovReady-Q instance and can be configured through
your local local/environment.json or passed in as environmental parameters when launching a container with
GovReady-Q.

• admins: used to configure a display point of contact “Administrator” on site and unrelated to the configuration
of actual administrators configured in the database.

• branding: used for custom branding

• db: if supplied, this is the DB connection used. See DB configuration.

• debug: should be false or absent in production environments. If set to true, turns on certain de-
bug/development settings.

• email: used to configure access to a mail server for sending and receiving email. Ojbect has the follow-
ing format: {"host": "smtp.server.com", "port": "587", "user": "...", "pw":
"....", "domain": "webserver.hostname.com"}. See Configuring email and Other Configu-
ration Settings. },.

• govready_cms_api_auth: used to store API key to interact with GovReady’s CMS agent and dashboard. Not
relevant to most users. See [GovReady-CMS-API](https://github.com/GovReady/GovReady-CMS-API).

• host: this is the domain name (HTTP Host header) used for root-level GovReady-Q pages. See also
organization-parent-domain, which is used to construct organization subdomains (if using a different
base domain).

• https: set to true to generate HTTPS headers and urls when site is running behind a proxy terminating HTTPS
connections. See Configuring a Reverse Proxy Webserver for Production Use.

• mailgun_api_key: used to hold API key for using mailgun to send/receive emails.

• memcached: if setting is true, enable a memcached cache using the default host/port

• organization-parent-domain: this is the domain name (HTTP Host header) suffix used for
organization-specific GovReady-Q pages.

• organization-seen-anonymously: show list of all created organizations to an anonymous (e.g., not
signed-in) user on home page if set to true.

• secret-key - used to make instance more secure by contributing a salt value to generating various random
strings and hashes. Do not share.

• single-organization: used to enforce single organization mode with “main” as subdomain of default
organization instead of multi-tenant with different subdomains for different organizations.

• static: used to prepend a root path to the default /static/ URL path for accessing static assets.

• syslog: used to set the host and port of a syslog-compatible log message sink. (Default: None.)

2.8. Environment Settings 39

Custombranding.html
configure_db.html
deploy_docker.html#configuring-email
deploy_prod.html#other-configuration-settings
deploy_prod.html#other-configuration-settings
https://github.com/GovReady/GovReady-CMS-API
configure_webserver.html

govready-q Documentation, Release 0.8.6

• trust-user-authentication-headers: used to activate reverse proxy authentication. See Proxy Au-
thentication Server.

2.8.2 Production Deployment Environment Settings

A production system deployment may need to set more options in local/environment.json. Here are recom-
mended settings:

{
"debug": false,
"admins": [["Name", "email@domain.com"], ...],
"host": "q.<yourdomain>.com",
"https": true,
"secret-key": "something random here",
"static": "/root/public_html"

}

2.8.3 Enterprise Single-Sign On Environment Settings

GovReady-Q supports Enterprise Login via IAM (Identity and Access Management). In this configuration, GovReady-
Q is deployed behind a reverse proxy that authenticates users and passes the authenticated user’s username and email
address in HTTP headers.

To activate reverse proxy authentication, add the header names used by the proxy to your local/environment.
json, e.g.:

{
"trust-user-authentication-headers": {

"username": "X-Authenticated-User-Username",
"email": "X-Authenticated-User-Email"

},
}

GovReady-Q must be run at a private address that cannot be accessed except through the proxy server. The proxy
server must be configured to proxy to GovReady-Q’s private address. See Enterprise Single-Sign On / Login for
additional details.

2.8.4 Custom Branding Environment Settings

You may override the templates and stylesheets that are used for GovReady-Q’s branding by adding a new key named
branding that is the name of an installed Django app Python module (i.e. created using manage.py startapp)
that holds templates and static files. See Applying Custom Organization Branding.

40 Chapter 2. Deploying GovReady-Q

enterprise_sso.html#proxy-authentication-server
enterprise_sso.html#proxy-authentication-server
enterprise_sso.html
CustomBranding.html

govready-q Documentation, Release 0.8.6

2.9 Enterprise Single-Sign On / Login

2.9.1 Proxy Authentication Server

GovReady-Q can be deployed behind a reverse proxy that authenticates users and passes the authenticated user’s
username and email address in HTTP headers. In this configuration:

• The user points their browser to the reverse proxy authentication server.

• The proxy authenticates users and proxies the request to GovReady-Q if and only if the user is authenticated and
authorized to access GovReady-Q. The proxy passes the user’s username and email address in HTTP headers of
the proxy’s choosing.

• GovReady-Q will create a user account for a new user or treat the user as logged in as soon as the user requests
a page. Therefore, there is no sign-up or log-in process within GovReady-Q when a proxy authentication server
is used.

• All other authentication methods to GovReady-Q are disabled when proxy authentication is enabled. Therefore
you should ensure that the Django admin’s username matches the admin’s username as provided by the proxy
server. Otherwise, you will lose access to the admin page. However, if there is a mismatch, you may disable
proxy authentication, log in to the Django admin with your admin username and password, and change your
admin username to match the username sent by the proxy server.

• GovReady-Q must be run at a private address that cannot be accessed except through the proxy server.

To activate reverse proxy authentication, add the header names used by the proxy to your local/environment.
json, e.g.:

{
"trust-user-authentication-headers": {
"username": "X-Authenticated-User-Username",
"email": "X-Authenticated-User-Email"

},
}

The proxy server must be configured to proxy to GovReady-Q’s private address. But the host and https settings in
GovReady-Q’s local/environment.json file must reflect the host and protocol used in the URL the end user
uses to access GovReady-Q. They do not need to match the address that the proxy server uses to reach the GovReady-Q
server.

Per the Django Documentation on authentication using REMOTE_USER, you must be sure that your proxy server
always sets or strips the special username and email headers, including headers that normalize to the same Django key
(in particular headers with underscores), from the client request and does not permit an end-user to submit a fake
(or “spoofed”) header value.

We have an example reverse proxy authentication server at https://github.com/GovReady/govready-q/tree/master/
tools/simple_iam_proxy_server which can be used for debugging purposes.

2.9. Enterprise Single-Sign On / Login 41

https://docs.djangoproject.com/en/dev/howto/auth-remote-user/
https://github.com/GovReady/govready-q/tree/master/tools/simple_iam_proxy_server
https://github.com/GovReady/govready-q/tree/master/tools/simple_iam_proxy_server

govready-q Documentation, Release 0.8.6

2.10 Applying Custom Organization Branding

The look and feel of GovReady-Q can be customized a bit by overriding the Django templates that are used to construct
the site’s pages and by serving additional static assets.

Custom branding can contain static assets (such as a logo image) and HTML template overrides. Branding is packaged
into a directory with a particular directory layout and some Python boilerplate code that allows GovReady-Q to find
the branding files. The directory is placed inside the main GovReady-Q directory, and an application setting is used to
activate it.

Before setting out to create custom branding, make sure you have GovReady-Q set up for development on your
workstation. You’ll need a working setup of GovReady-Q to create the branding directory and to test your changes.

2.10.1 Creating the branding directory

Custom branding is packaged inside what Django confusingly calls an application, but it is just a packaged sub-
component of a website. To create a new branding package directory, change to the directory where you have
GovReady-Q set up. Then run:

python3 manage.py startapp sample_branding

This command creates a new directory called sample_branding with Python boilerplate code to make it a valid
Django “application.”

Make directories for storing the custom static assets and templates:

mkdir sample_branding/static
mkdir sample_branding/templates

2.10.2 Activate the branding package

Next, let your development installation of GovReady-Q know that you want to use the custom branding package.
In your local/environment.json file, add a setting named branding and set it to the name of the custom
branding package directory.

"branding": "sample_branding",

See Environment Settings for more information about the local/environment.json file. Note that for the file
to be valid JSON the last setting cannot have a trailing comma.

2.10.3 Overriding templates

Any of the templates that make up GovReady-Q’s frontend can be overridden. The full list of templates can be browsed
in GovReady-Q’s GitHub repository at

https://github.com/GovReady/govready-q/tree/master/templates

Start by trying to override the navbar.html template, which is inserted at the top of every page. Use your favorite
text editor to create a file at sample_branding/templates/navbar.html. Copy the content of GovReady-
Q’s stock navbar.html from https://github.com/GovReady/govready-q/blob/master/templates/navbar.html into it.
(GitHub’s “Raw” button is handy for getting a clean version to save or copy/paste.)

At the bottom of the file, add some custom HTML, such as:

42 Chapter 2. Deploying GovReady-Q

deploy_local_dev.html
deploy_local_dev.html
https://docs.djangoproject.com/en/2.1/ref/applications/
Environment.html
https://github.com/GovReady/govready-q/tree/master/templates
https://github.com/GovReady/govready-q/blob/master/templates/navbar.html

govready-q Documentation, Release 0.8.6

<div>
Welcome to my organization’s custom site!

</div>

Start GovReady-Q on your workstation (see the development docs) and visit a page. You should see your new content
below the navbar at the top of every page.

2.10.4 Adding custom CSS

You can also add a custom CSS stylesheet to your branded GovReady-Q by taking the following steps:

a) Add the CSS file as a static asset.

b) Insert a <link rel="stylesheet" href="..."> tag into the <head> section of each page’s HTML
by overriding the head.html template.

To create the static asset, make a new file named sample_branding/static/custom.css. Let’s say you want
to make the background color of each page red. The file should contain:

body {
background: red !important;

}

Then override the head.html template. GovReady-Q’s base for head.html is empty — its purpose is only to
allow you to add to the <head> element. So create a new file at sample_branding/templates/head.html
and put in it:

{% load static %}
<link rel="stylesheet" href="{% static "custom.css" %}">

See the Django documentation for static files for more information about the static template tag.

Open any page in your locally running GovReady-Q and you should see that the background color of every page has
changed.

2.10.5 Keeping your templates up to date

With each new released version of GovReady-Q, there is the possibility that the stock templates have changed. Some
changes may require you to re-engineer your template overrides to preserve functionality.

2.10.6 Creating a custom Docker image

If your organization is deploying GovReady-Q using Docker, you will need to embed your custom branding package
within a Docker image. You have two options:

1. Modify GovReady-Q’s stock Dockerfile, i.e. the one in GovReady-Q’s source code, to add and activate your
branding package and then build your own GovReady-Q Docker image from the GovReady-Q source files that
you cloned from GitHub.

2. Make your own Dockerfile that uses a released GovReady-Q image as its parent image and adds to it just the
steps needed to add and activate your branding package.

2.10. Applying Custom Organization Branding 43

deploy_local_dev.html
https://docs.djangoproject.com/en/2.1/howto/static-files/

govready-q Documentation, Release 0.8.6

Creating your own Dockerfile that uses a released GovReady-Q image as its parent image

We recommend method 2. To create your own Dockerfile that uses a released GovReady-Q image as its parent
image, create a new Dockerfile in your branding package directory, e.g. a new file named Dockerfile in the
sample_branding directory you created earlier.

Then choose which parent image you will use from the available GovReady-Q tags. Each tag corresponds to a release
version. Your Dockerfile begins with a FROM line that combines govready/govready-q: with the tag name you
choose. In this example we use the latest tag which is an alias for the most recent version of GovReady-Q:

FROM govready/govready-q:latest

The subsequent commands in your Dockerfile configures the container, picking up where the parent image’s Dockerfile
leaves off. For more information about the parent image, refer to GovReady-Q’s Dockerfile on GitHub.

Your Dockerfile’s next step is to add your branding package into the image in a directory named branding:

RUN mkdir branding
COPY . branding

Finally, you’ll need some commands to adjust permissions, to activate the branding package when GovReady-Q starts,
and to prepare the static assets to be served. The complete Dockerfile should look like this:

Build an image on top of the stock GovReady-Q image.
FROM govready/govready-q:latest

The parent Dockerfile ends with 'USER application' to run the
container as a non-privileged user. But we need to go back to
root to add additional files and then switch back to the non-
root user at the end.
USER root

Copy our public app files into place.
RUN mkdir branding
COPY . branding

Activate the branding package. The environment variable is read
by dockerfile_exec.sh in the GovReady-Q parent image. And modifying
/tmp/environment.json is necessary at this step so that collectstatic
picks it up below.
ENV BRANDING branding
RUN sed -i "s/}/,\"branding\": \"branding\" }/" /tmp/environment.json

Flatten static files. The base image did it once, but we may have
added new static files so we must do it again.
RUN python3.6 manage.py collectstatic --noinput

Run the container's process zero as this user --- see above.
USER application

Check that everything looks good.
RUN python3.6 manage.py check

Finally you can build and test your custom image.

44 Chapter 2. Deploying GovReady-Q

https://hub.docker.com/r/govready/govready-q/tags
https://github.com/GovReady/govready-q/blob/master/Dockerfile

govready-q Documentation, Release 0.8.6

Building your docker image

If you were in the GovReady-Q sources directory, move into your branding package directory:

cd sample_branding

Then fetch the parent image and build your image:

docker image pull govready/govready-q:latest
docker image build --tag myorg/govready-q-branded:latest .

(Substitute the right tag depending on the tag you chose for the FROM line in your Dockerfile.)

Test that your image works by launching a new container based on your image:

docker container run --rm -it -p 127.0.0.1:8000:8000 myorg/govready-q-branded:latest

Once GovReady-Q is running in the container, visit it at http://localhost:8000. Use CTRL+C in the console
to terminate and destroy the test container running your image.

For more about running GovReady-Q with Docker, see Deploying with Docker.

2.10. Applying Custom Organization Branding 45

deploy_docker.html

govready-q Documentation, Release 0.8.6

46 Chapter 2. Deploying GovReady-Q

CHAPTER

THREE

PERMISSIONS

This document describes the user permissions model in Q.

3.1 What Q tracks

GovReady-Q tracks the following major entities

• Users - individuals with logins to an installed instance of Q

• Organizations - entities, e.g., companies, around with data in Q is segmented

• Folders - collections of Projects

• Projects - instantiations of Compliance Apps

• Membership - associating individual users with organizations and systems

• Tasks/Modules - coherent grouping of questions and educational content

• Questions/Answers - specific snippet of content within a Task

• Templates - drives automatic generation of artifacts, supporting variable substitution

3.2 Users

3.2.1 Global user data

A User is authenticated by a unique username and a hashed password.

Each User has one or more email addresses associated with their account and notification email settings.

User accounts — i.e. the fields above — are global to a Q deployment. They are not segmented by Organization. For
instance, if a User has been created for one Organization, they sign in — and not sign up — into other Organizations.
Changing a User’s password changes it for all Organizations. (Of course, a User will not be authorized to access all
Organizations. See the next section on Organizations.)

47

govready-q Documentation, Release 0.8.6

3.2.2 Segmented user data

Each User additionally has a unique “organization user profile” associated with each organization to support the same
User having different roles at different organizations. (This user profile is an “account project” that holds additional
User information including a User’s full name, profile photo, etc. In short, each User has a different profile in each
Organization.

The profile information can be seen by all other members of the Organization because it is used in the history of
question answers, notifications, discussions, and many other places.

(The User is the only “member” of their account projects (see Project membership below), which means they are the
only User who can edit the information.)

3.2.3 System staff

Users marked as staff in the Django admin can see Q Analytics.

3.3 Portfolios

Portfolios are used to segment Projects and the data contained within them to create data isolation at a logical level.

3.3.1 Access to Portfolios

Each Portfolio begins with an ‘owner’ creating the portfolio. When any user signs up, a portfolio is automatically
created with the title as the users username and assigning ownership to the user. An owner of a portfolio can grant
other users access to their porfolio. If a user has access to a portfolio, they will have access to the projects within that
portfolio. If an owner of a portfolio removes a users access to a portfolio, they will lose access to the projects within
that portfolio.

3.4 Folders

A Folder is a collection of one or more Projects (see below) within the same Organization.

Folder permissions are based in part on Project permissions:

• A user can see that a Project is a part of a Folder if the user has read access on the Project.

• A user can add Projects to a Folder or rename a Folder if the user is an administrator of any Project within the
Folder or is an administrator of the Folder itself. These users may not be able to see all Projects within the
folder if they do not have read access to those Projects, but they will be told how many Projects they can’t see
in the Folder.

There is no separate “read” permission on a Folder. A Folder can be seen just when a user has read access on a Project
within it or is an administrator of the Folder itself.

48 Chapter 3. Permissions

govready-q Documentation, Release 0.8.6

3.5 Projects

Each time an app is started from the Compliance Store, a new Project is created. A Project represents the instantiated
app and is comprised of a collection of Tasks. Every Project belongs to exactly one Organization.

3.5.1 Membership

Projects have zero or more Users who are members and zero or more Users who are administrators.

3.5.2 Read Access

Any access to a Project requires read access, which is granted if any of the following are true:

• They are a member or administrator of the Project.

• They have read access to any Task in the project.

• They are a guest participant in a Discussion within the Project.

(This is a subset of the requirements for membership in an Organization, therefore read access to a Project guarantees
membership in the Organization it belongs to.)

3.5.3 Operations

Project members can begin Tasks listed on Project pages, either by adding apps from the Compliance Store or starting
Tasks for modules contained in the Project’s app. Project members can also invite guests to discussions.

Only administrators can send invitations to add new project members, import and export Project data, and delete
Projects.

The Tasks (the questions and answers) within a Project are further restricted (see Tasks below).

3.5.4 New Projects

Any member of an Organization can create a new Project within that Organization by starting a new Compliance App
and becomes the Project’s first administrator.

When a User creates a new Project, they are offered Compliance Apps from AppSources whose Available to
all option is checked and from AppSources that don’t have ‘Available to all’ checked but explicitly list the Organi-
zation in its ‘Available to orgs’ list.

New Projects are added into a new or existing Folder (for existing folders, see Folder permissions above).

3.6 Tasks

A Task is a set of questions and answers. Tasks represent the state of a Project — each Project has a root Task — as
well as the state of all the modules started within the Project.

Each Task belongs to exactly one Project. Each Project has exactly one root Task.

A Task has an editor, which is the User who has primary responsibility for completing the Task.

A User has both read and write access to a Task if any of the following are true:

3.5. Projects 49

govready-q Documentation, Release 0.8.6

• They are the editor of the Task.

• They are a member or administrator of the Project that the Task belongs to.

A User with read access can see the Task on the page for the Project that it belongs to and can see all of its questions,
answers, and outputs and can start a Discussion on questions.

A user can also see a particular question within a Task (and its answers and some Task metadata, but not other questions
or Task outputs) if they are a guest in a Discussion on that question.

A User with write access to a Task can answer questions within the Task (which sometimes involves starting new
Tasks which they become the editor of), invite other users to become the Task’s new editor, and delete/undelete the
Task (although there is no UI for that currently).

50 Chapter 3. Permissions

CHAPTER

FOUR

AUTHORING COMPLIANCE APPS

4.1 Understanding Compliance Apps

Compliance apps map IT System components to compliance controls. A “component” can be any part of a system
that contributes to its operation including organizational processes.

Compliance apps collect and assess information about one or more system components and translate that information
to compliance documentation.

Compliance apps can collect information about a system component from people (via web-based questionnaires) and
from system components (via an Automation API).

4.1.1 Compliance Apps are Collections of Modules

A Compliance app is a collection of “modules” for gathering information. A module is a collection of questions and
output documents. A module can have just questions and output documents, just output documents and no questions,
or both questions and output documents.

An “app” is a collection of “modules,” one of which must be named “app.” Modules are linear sequence of questions
presented to users that produces zero or more output documents. Modules are stored in YAML files. Output documents
of various types are supported such as markdown, HTML, and YAML. (See Modules, Questions, and Documents for
documentation on writing modules.)

51

assets/app_diagram.png
Automation.html
Schema.html

govready-q Documentation, Release 0.8.6

The typical user experience will be to first pick a “top level” app from the compliance catalog representative of IT
System, then pick the “component” apps that represent the specific components of the IT System, and then iteratively
complete the questions within the component apps modules.

Technically speaking, a top level app is a module containing questions whose answers are other apps.

The below diagram depicts an exploded view of the relationships between a top level app to a component app to
modules and questions.

4.1.2 App Structure

Each app is defined by a set of YAML files and asset files stored in the following directory structure:

app_name
README.md
app.yaml
assets

app.png
image_one.yaml
image_two.yaml
...

module_one.yaml
module_two.yaml
...

By convention, each app is required to have app.yaml file which holds metadata for displaying the app in the
compliance apps catalog, such as its title and description, and an assets/app.png graphic which displays as the
app’s icon. app.yaml also holds the top-level module questions which define the layout of the app’s main screen
once it is started by the user. The contents of README.md are also displayed in the apps catalog.

Other module YAML file may be includes in the app as well, as needed.

The assets subdirectory can contain any static assets that will be served when showing the app’s modules for the
user, such as images included in document templates. A file typically named app.png in the assets directory is the
app’s icon, which is displayed when browsing the app catalog as well as when the app is used within another app, if
icon: app.png is specified in app.yaml.

52 Chapter 4. Authoring Compliance Apps

assets/app_exploded.png

govready-q Documentation, Release 0.8.6

4.1.3 App YAML

The app.yaml file that exists in every app serves two purposes:

1. It includes app catalog information, i.e. metadata, that will be shown in the app directory, such as the app’s short
and long description, version number, vendor, etc.

2. It also defines a module (see Modules, Questions, and Documents) which defines the top-level layout of the app.
The module may only contain questions whose type are module or module-set.

The app.yaml file looks like this:

id: app
title: My App
type: project
icon: app.png # refers to file in app's assets directory
protocol: # for inner apps only
- globally_unique_protocol_name

catalog:
(continues on next page)

4.1. Understanding Compliance Apps 53

Schema.html
assets/app_structure_sm.png

govready-q Documentation, Release 0.8.6

(continued from previous page)

categories:
- Category Name
- Another category name

vendor: GovReady PBC
vendor_url: https://www.govready.com
status: Operational
version: 0.6
version-name: First Release
source_url: https://github.com/GovReady/govready-app-example
description:
short: |

One-line description of the app here, using Markdown.
long: |

Long description of the app here only if README.md is
not present.

It can be multiple paragraphs and is Markdown.
recommended_for:
- key_short: Org

value: Medium
- key_short: Tech

value: Drupal
- key_short: Role

value: Dev

questions:
- id: item1
title: Do A Thing
type: module
module-id: module1 # refers to module1.yaml within this app
tab: TabName
group: GroupName

... more questions here ...

output:
- tab: TabName
format: markdown
template: |

This (optional) content will appear at the top of the TabName tab.

The questions in the app YAML file can only be of type module and module-set. The questions can specify a
module-id to refer to another module within the same app or a protocol to allow the user to choose any app that
has a matching protocol value set at the top level of the YAML file. See Modules, Questions, and Documents for
details on these question types.

A module YAML structure is identical to app.yaml structure but without the catalog details section.

54 Chapter 4. Authoring Compliance Apps

Schema.html

govready-q Documentation, Release 0.8.6

Hide “Question Skip” Buttons

As of version 0.8.6, the “I don’t know” and “It doesn’t apply” buttons to skip questions can be hidden from users.

We recommend you never use this feature.

This feature was added to support the use case of complex, legacy questionnaire assessments that (1) cannot be changed
easily and (2) provide a better user experience when users get stuck and start a discussion instead of later learning that
skipping a question caused them to miss many other questions.

Some background is useful. GovReady-Q was designed for users to love easily and quickly answering as few questions
as possible to generate the information that organizational processes need. Users love the option to skip questions.
Skipped questions empower users to move fast, answer what they can, and iteratively complete work. That gets
information to you quickly and reduces cycle time. Skipped questions also provide instant feedback that a user doesn’t
have information readily available. Frequently skipped questions indicate stumped users, and the need to rethink the
question or use multiple questions and interstitials to better guide users.

We’ve all experienced the frustration of not understanding what is being asked of us, not knowing whom to ask for
help, or knowing the question asked does not apply. This frustration turns galling and Kafkaesque when the party
demanding compliance confounds our ability to comply.

Fight-or-flight response kicks in when users feel trapped. Users start to avoid your process or combat it. They can
(unfairly) transfer their frustration onto your role, or worse, onto you. Instead of helping to pull your colleagues into
your process, they feel you are pushing them away.

So if you really, really need to hide the skip buttons to make the experience easier for your users, add a
hidden-buttons array key to the app.yaml file and list the skip buttons to hide. The example snippet below
hides just the “I don’t know button”.

id: app
title: My App
type: project
icon: app.png # refers to file in app's assets directory
protocol: # for inner apps only
- globally_unique_protocol_name
hidden-buttons:
- no-idea

The possible YAML array values for the buttons are no-idea (“I have no idea”), not-applicable (“It doesn’t
apply”), not-now-button (“I’ll come back”), and not-sure-button (“Unsure”).

NOTE: As of version 0.8.6, the “I’ll come back” and “Unsure” functionality been removed from the UI for all cases
because of poor user experience but are preserved for legacy data and potential future use with a better UI.

4.1.4 Top Level Apps

Apps that describe the required components of a compliant IT system are considered “Top Level” apps. Each question
in a Top Level app specifies a type of compliance app (e.g., a compliance app “protocol”) that is needed to represent
that component.

4.1. Understanding Compliance Apps 55

govready-q Documentation, Release 0.8.6

4.1.5 Adding Apps to GovReady-Q Deployments

Separating compliance apps from the compliance server enables a much richer ecosystem and virtuous cycle of inno-
vation than having everything embedded exclusively within the compliance server. A GovReady-Q deployment can
pull app and module content from local directories and git repositories. An organization using GovReady-Q can freely
mix compliance apps from third parties with private compliance apps located only on their network.

Compliance apps are very much like modular plugins that customize the compliance server to the unique system and
components of the organization.

This leaves the need to specify which compliance apps are available to a compliance server deployment. This specifi-
cation of available apps is known as an “app source” and is done with a JSON “spec” file entered in the AppSource
model via the Django admin interface.

The process is currently a bit clumsy with terminology that reflects the software’s evolution toward the app concept.
Nevertheless, the approach provides flexibility of sourcing apps from local file systems and public and private git
repositories. And each source specifies a virtual filesystem from which one or more top level apps and compliance
apps can be found located.

The below screenshot of the AppSource module in the Django admin interfaces shows the JSON “spec” file.

The AppSource module also contains fields to indicate to which subdomains of the deployment the source’s apps
are available.

56 Chapter 4. Authoring Compliance Apps

assets/appsources.png

govready-q Documentation, Release 0.8.6

App Source virtual filesystem layout

Whether the source is a local directory or a git repository, the source must have a directory layout in which each app
is stored in its own directory. (The directory name becomes an internal name for the app.) For instance:

app1/app.yaml
app1/...other_app1_files
app2/app.yaml
app2/...other_app2_files
...

Updating modules

After making changes to modules or AppSources for system modules (like account settings), run python3
manage.py load_modules to pull the modules from the sources into the database. This only updates system
modules.

Other modules that have already been started as apps will not be updated. Each time you make a change to an app,
you can reload changes using the app authoring tool in GovReady-Q.

4.2 Compliance App Authoring Tutorial

This is a step-by-step guide to creating compliance apps using the Docker version of the GovReady-Q Compliance
Server.

In this guide you will learn how to:

• Start and configure the Docker version of GovReady-Q

• Create a compliance app

• Edit a compliance app’s YAML files

• Edit a compliance app using GovReady-Q’s authoring tools

• Deploy the app to a production instance of GovReady-Q and storing apps in a source code version control
repository

4.2.1 Step 1: Prepare your local environment

Create a folder on your workstation

GovReady-Q compliance apps are generally developed in an off-line development environment, usually on the app
developer’s macOS or Linux workstation — any environment that can run Docker. In this environment, the compliance
app data files will be stored in a local directory. This guide assumes the use of a local workstation for development
and discusses production deployment at the end.

(Once the apps are ready to be published to the rest of the organization, the apps can be uploaded to a git repository,
such as GitHub or an on-premise equivalent. The production instance of GovReady-Q will typically read compliance
apps from the git repository directly and not from a local disk.)

On the development workstation, create a folder to hold GovReady’s install script, the GovReady-Q database (in
development, Sqlite is used), and the compliance apps that you will be authoring. The folder can be anywhere:

4.2. Compliance App Authoring Tutorial 57

govready-q Documentation, Release 0.8.6

mkdir /path/to/dev_directory
cd /path/to/dev_directory

Install Docker

If you haven’t already done so install Docker on the workstation and, if appropriate, grant non-root users access to run
Docker containers (or else use sudo when invoking Docker below).

4.2.2 Step 2: Install the GovReady-Q Compliance Server, Docker version

Starting the Docker container

Next download GovReady’s docker_container_run.sh script. This script simplifies passing various settings to create
and configure the govready-q docker container that we will use for local development.

wget https://raw.githubusercontent.com/GovReady/govready-q/master/deployment/docker/
→˓docker_container_run.sh
chmod +x docker_container_run.sh

docker_container_run.sh supports a variety of advanced configuration settings via command line parameters.
The ones we care about for developing compliance apps are:

• --sqlitedb /path/to/govready-q-database.sqlite, which sets an absolute path to a Sqlite
database that holds all persistent information across container runs

• --appsdevdir /path/to/apps, which sets an absolute path to the directory in which app YAML files
will be developed

• --relaunch, which removes any existing govready-q Docker container if one is running

Download and start GovReady-Q:

./docker_container_run.sh --sqlitedb `pwd`/database.sqlite --appsdevdir `pwd`/apps --
→˓relaunch

Note that pwd is used to ensure the paths are absolute.

The script will download the govready/govready-q image from the Docker Hub, which could take a few minutes. It
will then start a new Docker container named govready-q and will launch the Q source code within it.

When the container is launched it will let you know the URL to visit:

GovReady-Q has been started!
Container Name: govready-q
Container ID: d99e8ac2d6a761cfd7be7f94bd01d5f7115efd66714064f7b1f0f6c09b74c269
URL: http://localhost:8000

(You can change the hostname and port by adding e.g. --address q.company.com:8010.)

It takes about 15 seconds for the GovReady-Q server to be ready. Open the URL (e.g. http://localhost:8000) and
reload a few times until the GovReady-Q Compliance Server becomes available:

58 Chapter 4. Authoring Compliance Apps

https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/linux/linux-postinstall/#manage-docker-as-a-non-root-user
https://docs.docker.com/engine/installation/linux/linux-postinstall/#manage-docker-as-a-non-root-user
docker_container_run.sh
README.md#advanced-configuration
https://hub.docker.com/r/govready/govready-q/
http://localhost:8000

govready-q Documentation, Release 0.8.6

Setting up your organization and administrative user

Now that the GovReady-Q Compliance Server is running, create an administrative account and an organization. Run
the following command and answer the prompts:

docker container exec -it govready-q first_run

Your prompt and reply will look something like this:

Installed 2 object(s) from 1 fixture(s)
Let's create your first Q user. This user will have superuser privileges in the Q
→˓administrative interface.
Username: admin
Email address: admin@mycompany.com
Password:
Password (again):
Superuser created successfully.
Let's create your Q organization.
Organization Name: The Company, Inc.

Now return to your browser, reload the page, and notice the company name has updated:

4.2. Compliance App Authoring Tutorial 59

assets/firststart.png

govready-q Documentation, Release 0.8.6

You can now sign in with the administrative username and password you created.

60 Chapter 4. Authoring Compliance Apps

assets/firststart2.png

govready-q Documentation, Release 0.8.6

Congratulations! You’ve installed GovReady-Q Compliance Server configured for local development of compliance
apps!

4.2.3 Step 3: Creating a compliance app

Creating the app

In this section we’ll create our first compliance app. The app will appear in the compliance apps catalog in GovReady-
Q. Click Add other app in your browser to go to the compliance apps catalog.

4.2. Compliance App Authoring Tutorial 61

assets/firststart3.png

govready-q Documentation, Release 0.8.6

Let’s create our first compliance app! Use the command below:

docker container exec -it govready-q ./manage.py compliance_app host myfirstapp

The output will be:

Created new app in AppSource host at /usr/src/app/q-files/myfirstapp

The path shown in the output is a path within the container’s filesystem, which is inaccessible from the workstation.
The actual path is inside the path given to the --appsdevdir command line argument previously. If you followed
our steps above exactly, you can see the app’s files in your apps folder:

$ ls -l apps/myfirstapp
-rw-r--r-- 1 root root 664 Oct 25 11:43 app.yaml
drwxr-xr-x 2 root root 4096 Oct 25 11:43 assets
-rw-r--r-- 1 root root 449 Oct 25 11:43 example.yaml

Head back to your browser and reload the compliance apps catalog page.

Your new app may not appear because the catalog is cached. To clear the cache, restart the container:

docker container restart govready-q

After a few moments the container will be back up. Reload the compliance app catalog page. You should now see
your app if you scroll to the end:

62 Chapter 4. Authoring Compliance Apps

assets/appcatalog.png

govready-q Documentation, Release 0.8.6

The development directory on the workstation now holds:

.
apps

myfirstapp
app.yaml
assets

app.png
example.yaml

database.sqlite
docker_container_run.sh

(More information about the structure of the app directory can be found in Understanding Compliance Apps.)

Editing app catalog metadata

Open apps/myfirstapp/app.yaml in a text editor. Edit the short description and add some text describing the
app you are building:

description:
short: |
Achieve compliance for our organization's systems.

Since this file was created by Docker, which is running as root, the file will be owned by root. You may need to use
sudo to edit this file.

Reload the container to clear the app catalog cache:

4.2. Compliance App Authoring Tutorial 63

assets/appcatalog2.png
Apps.html

govready-q Documentation, Release 0.8.6

docker container restart govready-q

And then reload the catalog page in your browser to see your description beneath myfirstapp. You can also edit
the app’s title and other catalog metadata, including the app’s icon in apps/myfirstapp/assets/app.png.

4.2.4 Step 4: Edit the compliance app’s YAML files

Start the app

In your browser, click on the myfirstapp entry’s Add button in the app catalog.

64 Chapter 4. Authoring Compliance Apps

assets/appcatalogafterchange.png

govready-q Documentation, Release 0.8.6

About editing the app

We can edit our new compliance app by editing its app.yaml and example.yaml files on disk in our favorite text
editor (described in this section) or with GovReady-Q’s built-in authoring tools (described in the next section).

After each edit to the compliance apps files on disk, it may be necessary to restart the Docker container if you modified
app catalog metadata (as you did above with docker container restart) or start a new instance of the com-
pliance app from the compliance apps catalog page in your browser, if you modified the app’s questions and output
templates.

GovReady-Q purposely does not automatically recognize changes to compliance apps on disk until a new instance of
the app is selected or a reload command (described below) is issued. This ensures previously loaded versions of the
compliance app correctly maintain data entered by end-users.

Editing the app’s main page

The opening screen of the app is determined by the questions section of the app.yaml file:

questions:
- id: q1

title: Example Module
type: module
module-id: example

The new app has a single question labeled by the title Example Module, as you see in the YAML and in your
browser. When the user clicks Example Module in the browser, they will start a new module defined by the YAML

4.2. Compliance App Authoring Tutorial 65

assets/startedapp.png

govready-q Documentation, Release 0.8.6

file referenced in the module-id data, in this case example.yaml.

Edit the title to:

title: Start Compliance

As described above, reloading the page in the browser will not show the change. This is by design. Since you are
developing an app on your local filesystem, the GovReady-Q authoring tools are available.

Click Authoring Tool in the right column, and then click Reload App from local filesystem. (Al-
ternatively, you could return to the compliance app catalog page and add the app again.)

Note how Start Compliance now appears in the browser.

66 Chapter 4. Authoring Compliance Apps

assets/authoringtools.png

govready-q Documentation, Release 0.8.6

Editing the app’s first module

Click Start Compliance. This begins the app’s module defined in example.yaml. The example module
contains a single sample question:

4.2. Compliance App Authoring Tutorial 67

assets/reloadedapp.png

govready-q Documentation, Release 0.8.6

Open example.yaml and see that the question’s type, prompt, and choices are defined in the YAML file’s
question’s section:

questions:
- id: q1

title: What is your favorite science fiction franchise?
prompt: What is your favorite science fiction franchise?
type: choice
choices:
- key: startrek

text: Star Trek
- key: starwars

text: Star Wars
- key: lordoftherings

text: Lord of the Rings
- key: other

text: Other

Change the prompt or choices.

(As with app.yaml, since this file was created by Docker the file will be owned by root. You may need to use sudo
to edit this file.)

As described above, reloading the page in the browser will not show the change. This is by design. Go back to the
main app page, click Authoring Tool and then Reload App from local filesystem, and then go back
to the Start Compliance page.

Your changes are now seen in your browser.

68 Chapter 4. Authoring Compliance Apps

assets/samplequestion.png

govready-q Documentation, Release 0.8.6

More information about the file format of modules can be found in Modules, Questions, and Documents.

4.2.5 Step 5: Edit a compliance app using GovReady-Q’s authoring tools

About the authoring tools

It is also possible to edit a compliance app’s questions without leaving your browser. When editing the compliance
app via GovReady-Q’s built-in authoring tools, you will immediately see the changes in the instance of the compliance
app you are editing without having to reload it. The changes are also immediately written to the files on disk.

GovReady-Q’s built-in authoring tools will let you edit and add questions, but currently won’t let you change the name
of the description of the app in catalog. You will still need to edit those details in the compliance app YAML files
stored on disk, as described above.

Editing a question

A blue pencil icon will appear at the top right of module questions when the authoring tools are available. Click the
pencil icon for the sample question. The question editor will pop up:

4.2. Compliance App Authoring Tutorial 69

assets/revisedquestion.png
Schema.html

govready-q Documentation, Release 0.8.6

This is a much easier way of editing questions! Try editing this question. After clicking Save Changes, look in
your text editor to see that the changes have been immediately saved to example.yaml.

Adding questions

It is also possible to add questions. In order to add a question, all of the existing questions must be answered. Answer
the sample question, or click Skip.

You’ll see an Add Question button on the module review page:

70 Chapter 4. Authoring Compliance Apps

assets/authoringtoolquestion.png

govready-q Documentation, Release 0.8.6

Try out the Add Question button now. It will create a new text question. Use the blue pencil icon to change the
question’s prompt and choices.

You have now seen how to create and edit an app!

4.2.6 Step 6: Deploy the app to a production instance of GovReady-Q

Adding apps to a git repository

Your workstation’s instance of GovReady-Q has been configured to load apps from the local filesystem. Your organi-
zation’s production instance of GovReady-Q can be configured similarly, but more likely it will be configured to load
apps from a remote git repository.

Create a new git repository in your source code control system and push your apps directory to the repository. The
repository’s root directory should contain a directory named myfirstapp:

repository root
myfirstapp

app.yaml
assets

app.png
example.yaml

If you have an existing source code control system containing apps in this layout, consider checking out the repository
locally so that it is in the same path provided to the --appsdevdir argument to docker_container_run.sh.
If your repository is in a different layout or if you are using multiple repositories to store compliance apps, see below.

4.2. Compliance App Authoring Tutorial 71

assets/addquestion.png

govready-q Documentation, Release 0.8.6

Configuring a production system to load apps from the git repository

On the production GovReady-Q instance, log into the Django admin at https://production-q/admin. Add
a new App Source.

Set its Slug to a short name for the repository, composed of letters, numbers, and underscores, such as mygitrepo.

If your git repository is public or accessible over an https: URL

If your git repository is accessible over an https: URL (such as a public GitHub repository), change the Source Type
to Git Repository over HTTPS and paste the URL into the URL field. The other fields can be left blank. Here’s what
that looks like:

If your git repository is private

If your git repository is private and accessible instead using an SSH URL (typically
git@github.com:organization/repository.git) and an SSH public/private keypair, such as with GitHub or GitLab
deploy keys, then first create a new SSH key for your GovReady-Q instance:

ssh-keygen -q -t rsa -b 2048 -N "" -C "_your-repo-name_-deployment-key" -f ./repo_
→˓deploy_key

Your GovReady-Q instance will hold the private key half of the newly generated keypair, and your source code control
system will hold the public key. Back in the Django admin, set the Source Type to Git Repository over SSH. Paste the
SSH URL into the URL field. Then open the newly generated file repo_deploy_key and paste its contents into
the SSH Key field. The other fields can be left blank. Here’s what that looks like:

72 Chapter 4. Authoring Compliance Apps

assets/appsource_git_https.png
mailto:git@github.com

govready-q Documentation, Release 0.8.6

Copy the public key in the newly generated file repo_deploy_key.pub into the deploy keys section of your
source code repository. Here is what that looks like on GitHub:

4.2. Compliance App Authoring Tutorial 73

assets/appsource_git_ssh.png

govready-q Documentation, Release 0.8.6

Other information about App Sources

As with local development, the production system’s compliance app catalog may be cached. To see new apps, restart
the production instance of GovReady-Q.

See App Sources for more information about how to configure your production instance of GovReady-Q to load apps
from local filesystem directories, git repositories (including on-prem git repositories), or GitHub.

Advanced setups for development with a repository of apps

In this guide we have used the --appsdevdir command to specify a location in which app YAML files and assets
are stored. In a small setup, all apps could be stored in a subdirectory of the location given to --appsdevdir.
But you may want to separate apps into different folders, such as if they are divided between folders in a single git
repository or across multiple git repositories, then a more advanced configuration of GovReady-Q is necessary.

Imagine the following directory structure where two GitHub repositories are cloned into two separate local directories
within apps, and each has a compliance_apps directory holding its apps:

.
apps (`--appsdevdir` directory)

repo1
compliance_apps

myfirstapp
mysecondapp

repo2
compliance_apps

mythirdapp
myfourthapp

database.sqlite
docker_container_run.sh

74 Chapter 4. Authoring Compliance Apps

assets/github_deploy_key_add.png
AppSources.html

govready-q Documentation, Release 0.8.6

The default setup from GovReady-Q docker installation only show apps in the compliance app catalog if the app files
are located in the immediate subdirectory of path configured to load apps. But we can also tell GovReady-Q to load
apps from multiple locations. In this case we will configure GovReady-Q to load apps from two locations:

apps/repo1/compliance_apps
apps/repo2/compliance_apps

Recall that the path given to --appsdevdir is mapped to a path within the Docker container so that the container
can see the YAML files on the (host) local filesystem. The container sees these directories as

/usr/src/app/q-files/repo1/compliance_apps
/usr/src/app/q-files/repo2/compliance_apps

Log into the Django admin at http://localhost:8000/admin. Add two new AppSource entries:

For the first, set the Slug to repo1 (or any other label that will help you distinguish the two repositories), the Source
Type to Local Directory, and the Path to /usr/src/app/q-files/repo1/compliance_apps. For
the second, set the Slug to repo2, the Source Type to Local Directory, and the Path to /usr/src/
app/q-files/repo2/compliance_apps.

Then restart the container:

docker container restart govready-q

and the apps defined in all of the repositories should be visible in the compliance app catalog.

4.3 App Sources

GovReady-Q can be configured by an administrator to load compliance apps from one or more sources, which can be
local directories or remote git repositories.

When using the Hosted Version of GovReady-Q, GovReady PBC is the administrator. If you are the administrator of
an installation of GovReady-Q at your organization, the information below will help you configure the App Sources
available to your users.

App Sources are configured in the Django admin at the URL /admin on your GovReady-Q domain under App
Sources:

4.3. App Sources 75

govready-q Documentation, Release 0.8.6

Each App Source points GovReady-Q to a directory or repository of compliance apps.

76 Chapter 4. Authoring Compliance Apps

assets/appsources_list.png
assets/appsource_git_https.png

govready-q Documentation, Release 0.8.6

4.3.1 App Source Slug

The first App Source field is the Slug. The Slug is a short name you assign to the App Source to distinguish it from
other App Sources. The Slug is used to form URLs in GovReady-Q’s compliance apps catalog, so it may only contain
letters, numbers, dashes, underscores, and other URL path-safe characters.

4.3.2 App Source Type

There are four types of App Sources: local directories, remote git repositories using HTTP which are typically public
repositories, remote git repositories using SSH which typically use SSH deploy keys for access, and remote GitHub
repositories using a GitHub username and password for access.

Local Directory

The Local Directory source type directs GovReady-Q to load compliance apps from a directory on the same machine
GovReady-Q is running on. (When deploying with Docker, that’s on the container filesystem unless a path has been
mounted to a volume or to the host machine.)

In the Path field, enter the path to a local directory containing compliance apps. This path is expected to contain a
sub-directory for each compliance app contained in this source. For instance, if you have this directory layout:

.
home

user
compliance_apps

myfirstapp
app.yaml

mysecondapp
app.yaml

then your Path would be /home/user/compliance_apps.

The path can be absolute or relative to the path in which GovReady-Q is installed.

Git Repository over HTTPS

The Git Repository over HTTPS source type is for git repositories, such as on GitHub or GitLab, that can be cloned
using an HTTPS URL. These repositories are typically public, or in an enterprise environment public within your
organization’s network.

Paste the HTTPS git clone URL — such as https://github.com/GovReady/govready-apps-dev — into the URL field.
Here’s what that looks like:

4.3. App Sources 77

https://github.com/GovReady/govready-apps-dev

govready-q Documentation, Release 0.8.6

The other fields can be left blank.

The Path field optionally specifies a sub-directory within the repository in which the compliance apps are stored if
they are not stored in the root of the repository. For instance if the repository has a directory layout similar to:

.
github.com/organization/repository

apps
myfirstapp

app.yaml
mysecondapp

app.yaml

then set the Path field to apps.

If the compliance apps are not in the repository’s default branch (i.e. something other than the typical master default
branch), then set the Branch field to the name of the branch to read the compliance apps from.

You can use HTTPS to access private repositories by placing your username and password or personal access token
into the URL, such as:

https://username:password@github.com/GovReady/govready-apps-dev

Since this requires user credentials, it should be avoided for production deployments in favor of using Git Repository
over SSH (see below).

78 Chapter 4. Authoring Compliance Apps

assets/appsource_git_https.png
https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/

govready-q Documentation, Release 0.8.6

Git Repository over SSH

If your git repository is private and accessible using an SSH URL (which typically looks like
git@github.com:organization/repository.git) and an SSH public/private keypair, such as with GitHub or GitLab
deploy keys, then use the Git Repository over SSH source type.

Create a new SSH key for your GovReady-Q instance to be used as a deploy key:

ssh-keygen -q -t rsa -b 2048 -N "" -C "_your-repo-name_-deployment-key" -f ./repo_
→˓deploy_key

Your GovReady-Q instance will hold the private key half of the newly generated keypair, and your source code control
system will hold the public key.

Back in the Django admin, set the Source Type to Git Repository over SSH. Paste the git clone SSH URL into the
URL field. Then open the newly generated file repo_deploy_key and paste its contents into the SSH Key field.
Here’s what that looks like:

The other fields can be left blank. Path and Branch can be set the same as with the Git Repository over HTTPS
source type (see above).

Copy the public key in the newly generated file repo_deploy_key.pub into the deploy keys section of your
source code repository. Here is what that looks like on GitHub:

4.3. App Sources 79

mailto:git@github.com
assets/appsource_git_ssh.png

govready-q Documentation, Release 0.8.6

Make the key read only by leaving “Allow write access” field unchecked and click Add the key to save the key.

GitHub Repository using the GitHub API

This source type can be used to access private GitHub repositories using a GitHub username and password or a
username and personal access token.

Set the Repository field to the organization name and repository name, separated by a slash, as in the repository’s
URL following github.com/. In Other Parameters, paste a small YAML-formatted document holding a
GitHub username and password or username and personal access token, formatted as follows:

auth:
user: 'myusername'
pw: 'mypassword'

The other fields can be left blank. Branch can be set the same as with the Git Repository over HTTPS source type
(see above).

Since this source type requires user credentials, it should be avoided for production deployments in favor of using Git
Repository over SSH.

80 Chapter 4. Authoring Compliance Apps

assets/github_deploy_key_add.png
https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/

govready-q Documentation, Release 0.8.6

4.3.3 Controlling access to apps

Controlling which organizations in a Q deployment can access which apps is done via the App Sources table.

The “Available to all” field of App Source, which is on by default, gives all users of all organizations the ability to start
an app provided by the App Source.

If the “Available to all” field is unchecked, then only users within white-listed organizations can start apps provided
by the App Source. The white-list is a multi-select box on the App Source page.

Removing access to a App Source does not affect any apps that have already been started by a user.

App executable content

Apps can contain executable content (some of which is disabled by default):

• JavaScript executed by the client browser contained within page HTML, via module template content.

• JavaScript executed by the client browser served as a static asset and referenced by a <script> tag.

Both sources of Javascript execute within the context of pages on the domain that the Q site itself runs on, which
means the scripts have access to the page DOM, cookies, localStorage, etc. These scripts must only be enabled if they
are trusted for these environments.

Javascript static assets (but not Javascript in module templates - this is a TODO) are therefore disabled by default.
(Javascript static assets are disabled by serving them with an incorrect MIME type.)

To enable these scripts, the Trust assets flag must be true on the App Source that provides the app. This flag
must only be true if any Apps provided by the App Source, including Apps already loaded into Q, are trusted to have
executable content that may have as much client or server-side access as the Q instance does itself.

4.4 Modules, Questions, and Documents YAML Reference

A module and its questions are defined in YAML specification files. The schema for the specification files is as follows:

4.4.1 Module

Each file is a Module. A Module has the following required fields:

id: module_id
title: Your Title Here

The module_id must match the file name that the YAML is saved into, without the path or file extension.

Several optional fields can be specified:

type: project
version: 1
instance-name: "Module for {{q1}}"
invitation-message: "Can you tell me about {{question.text}} and let me know when you
→˓are done?"
icon: app.png

The type field is set to project just when the Module is to be offered to users when they start a new Project.
(system-project is used for project-like modules that are system controlled and not offered to the user.)

4.4. Modules, Questions, and Documents YAML Reference 81

govready-q Documentation, Release 0.8.6

The version field is used only to force changes in the specification to be considered incompatible with any existing
user answers (see Updating Modules).

The instance-name is a template to generate a dynamic title for in-progress and completed modules. The
instance-name is rendered like other Module documents but it is always specified in text format (see Docu-
ments).

For modules that define the root of an application, icon specifies a static asset (in the assets directory) to use as
an application icon.

In addition, a Module may have an introduction document (for projects, the introduction appears at the top of
the project page; for other module types, it appears as an implicit initial interstitial) and a list of one or more output
documents. For example:

introduction:
format: markdown
template: |
Welcome to the module.

This module should take you two minutes.

output:
- title: Document 1
format: markdown
template: |

Document for {{project}}

Hello! This is the output of the module. You answered {{q1}}.

- title: Document 2
glyphicon: dashboard
format: html
template: |

<h1># Document for {{project}}</h1>

<p>Hello! This is the output of the module. You answered {{q1}}.</p>

The format of documents are described in a later section.

Finally, a Module contains a list of one or more Questions:

questions:
- id: q1
title: Your Favorite Animal
prompt: What's your favorite animal?
type: text

- id: q2
title: What Kind of Animal Is It
prompt: How would you classify this animal?
type: choice
choices:

- key: pet
text: common pet
help: Is this animal a common pet?

- key: wild
text: wild animal
help: Is this animal an undomesticated wild animal?

The schema for questions is documented in a later section.

82 Chapter 4. Authoring Compliance Apps

govready-q Documentation, Release 0.8.6

Additional fields for projects

Question Fields

The questions of projects are displayed in a layout of tabs and groups within each tab pane. Each question that shows
up on a project page should specify its tab and group name (which are also the display strings):

questions:
- id: howto_ssp

title: "SSP 101: What's a System Security Plan"
type: module
module-id: howto_ssp
tab: How To
group: Start Here
icon: ssp.png

icon specifies a static asset (in the assets directory) to use as an icon for the question. If the question’s type is
module and it is answered and the answer is a Task that has a top-level icon field, then the answer’s icon is used
instead.

Instead of tab and group, placement: action-buttons can be used instead to show the question in an
action bar above the tabs, rather than in tabs.

Output Document Fields

Output documents of a project module that have an id field are used in the following ways:

• They are displayed in the Related Controls page for the project. Add a title attribute to set the heading text
above the document’s content.

• They can be accessed from higher-level apps into which this app has been added. In a higher-level app, access the
rendered HTML value of the output document as {{question.output_documents.document_id}}.

When display: top is set on an output document, it is rendered above the Your Answers section.

Test Answers

Projects can provide sets of exemplar answers for use in test scripts. e.g.:

tests:
test1: # <-- test suite ID
description: "Sample data."
answers:

q1:
answers: # <-- answers to sub-task's questions
q1: desktop
q2: My Secure Tool

4.4. Modules, Questions, and Documents YAML Reference 83

govready-q Documentation, Release 0.8.6

4.4.2 Documents

Documents occur as introduction and output documents of Modules, and a restricted form of documents also
occurs in Question prompts (see Questions below). A document appearing in the output documents list is given as:

output:
- id: mydoc
title: Document 1
format: markdown
template: |

Hello!

The id and title fields are generally optional and are used for output documents only. An id is required to make
the document downloadable. The fields also have special uses in projects (see above). The format field is described
below.

The document can also be stored in a separate file by replacing the document data in the module YAML file with a
filename and placing the document properties and template in the named file, as in:

module.yaml
output:

- mydoc.md

mydoc.md
id: mydoc
title: Document 1
format: markdown
...
Hello!

When using a separate file, the document properties (id, title, and format) are given in a YAML block at the
top of the file. A line containing just three dots signifies the end of the YAML block, separating it from the document
template. The document template follows.

Document Format

The introduction and output documents of Modules allow a format to be specified. The document formats are:

• markdown — The document is entered in CommonMark (quick guide) in the specification file, but it will be
rendered into a richly formatted presentation on screen.

• html — The document is given in raw HTML, but it will be rendered on screen.

• text — The document is given in plain text, and it will display as preformatted (fixed-width) text on screen.

• json, yaml — Experimental.

84 Chapter 4. Authoring Compliance Apps

http://commonmark.org/
http://commonmark.org/help/

govready-q Documentation, Release 0.8.6

Additional Markdown Notes

Documents specified in markdown format are rendered according to the CommonMark 0.25 specification.

Note that for some things like tables, it is necessary to insert raw HTML right into the document, which is acceptable
CommonMark. To create a table:

<table><thead><th>

Col 1

</th>
<th>

Col 2

</th>
</thead>
<tbody><tr><td>

Some [commonmark](http://www.google.com) within the cell.

</td>
<td>

More *content.*

</td></tr></tbody></table>

Some of the newlines are necessary to get CommonMark to go out of raw HTML mode and back into parsing Com-
monMark.

Document Templating

All document formats are evaluated as Jinja2 templates. That means within your document you can embed special
tags that are replaced prior to the document being displayed to the user:

• {{ question_id }} will be replaced with the user’s answer to the question whose id is question_id.
For choice-type questions, the value is replaced by the choice key. Use {{ question_id.text }} to get
display text. See the question types documentation below for details.

• {% if question_id == 'value' %}....{% endif %} is a conditional block. The contents inside
the block (....) will be included in the output if the condition is true. In this example, the contents inside the
block will be included in the output if the user’s answer to question_id is value.

Output documents and question prompts have access to the user’s answers to questions in question variables. (The
introduction document does not have access to the user’s answers because questions have not yet been answered.)

The following information is also available within the output template for each question as of version v0.8.6:

• {{ question_id.not_yet_answered }} Question has not yet been answered.

• {{ question_id.answered }}Question has an answer either by user or was imputed, but not imputed
null or answered null.

• {{ question_id.imputed }} Question considered “answered” but no TaskAnswerHistory record exists
in the database for question meaning a user didn’t provide the answer.

4.4. Modules, Questions, and Documents YAML Reference 85

http://commonmark.org/
http://jinja.pocoo.org/docs/dev/templates/

govready-q Documentation, Release 0.8.6

• {{ question_id.skipped }} Question has a null answer either because imputed null or the user
skipped it.

• {{ question_id.skipped_by_user }} Question has a null answer because used a skip button (e.g.,
question wasn’t imputed null).

• {{ question_id.skipped_reason }} Question’s indicated reason for skipping (e.g. “I don’t know”
or “It doesn’t apply”)

• {{ question_id.unsure }} If question was answered by a user, its unsure flag. (NOTE: Purpose of this
flag was to allow users to indicate uncertainty in the answer. Due to usability issues however, this feature is
currently hidden.)

• {{ question_id.date_answered }} Question answered date.

• {{ question_id.reviewed_state }} Question reviewed value.

All documents also have access to the project title as {{project}}.

Project Documents

In addition to the output documents described above, a project module may also have a snippet that defines how
a project appears in the project listing page:

snippet:
format: markdown
template: |
Project {{name}}

4.4.3 Module Assets

Modules often make use of assets outside of the YAML file.

Static Assets

Static assets such as images can be referenced in module content (introductions, question prompts, and output docu-
ments). These assets are exposed by the Q web server in its static path. Place static assets in an assets subdirectory
where the module is. When the asset is referenced in a Markdown document template, its path will be rewritten to be
its public (virtual) path on the web server.

For example, to include an image in a module introduction add the image in the Markdown template:

module.yaml

...
format: markdown
template: |

...

Place the module and image files at the path:

module.yaml
assets/my_image.png

86 Chapter 4. Authoring Compliance Apps

govready-q Documentation, Release 0.8.6

Private Assets

Private assets are other files that are stored with a module but are not exposed by the web server. The directory provides
a place to store files for internal use during module development.

Place private assets in a private-assets subdirectory next to the module YAML file.

4.4.4 Questions

Questions have the following required fields:

- id: q1
title: Your Favorite Animal
prompt: What's your favorite animal?
type: text

The question id is used to refer to this Question in other questions and in the output documents.

The title is used to describe the Question in places where a long-form prompt would not be appropriate.

The prompt is the text the user is prompted with when presented with the question. The prompt is rendered like other
Module documents but it is always specified in markdown format (see Documents). The first line (paragraph) of the
prompt is shown in larger, bold type.

A question may have other optional fields that provide the user with other information, such as:

examples:
- example: |

First example.
- example: |

Second example.
reference_text: See NIST SP 800-171 page 102.

Like the prompt, each entry inside examples and the reference_text are Markdown templates.

Removing a question, changing a question type, and other changes as noted below are incompatible changes (see
Updating Modules).

Question Types

text

This type asks the user for a single line of free-form text. The text cannot be empty.

A placeholder can be specified which places ghosted “placeholder” text inside the form field when the user has
not yet entered anything. A default value can be specified, instead, which fills in the field with a value that the
user can edit (or not) before submitting the answer. The placeholder and default fields are rendered like other Module
documents — just like the prompt.

help text can be specified which provides an additional prompt smaller and below the field input.

Example:

- id: q1
title: Your Favorite Animal
prompt: What's your favorite animal?
type: text

(continues on next page)

4.4. Modules, Questions, and Documents YAML Reference 87

govready-q Documentation, Release 0.8.6

(continued from previous page)

placeholder: enter a type of animal
help: Examples: dog, cat, turtle, lion

In document templates and impute conditions, the value of text questions is simply the text the user entered.

password

This type asks the user for a password. It is the same as the text question type, except that a password input field is
used to mask the input. help can be specified. placeholder and default are not allowed.

email-address

This type asks the user for an email address. It is the same as the text question type, except that the value entered
must be a valid email address. placeholder, default, and help can be specified.

url

This type asks the user for a web address (a URL). It is the same as the text question type, except that the value
entered must be a valid web address. placeholder, default, and help can be specified. The web address is not
checked for existence — only the form (syntax) of the address is checked.

longtext

This type asks the user for free-form text using a large rich text input area that allows for multiple lines of text and
some simple formatting. The text cannot be empty.

A default value can be specified, which fills in the field with a value that the user can edit (or not) before submitting
the answer. The field is rendered like other Module documents — just like the prompt. It is given in Markdown.

help text can be specified which provides an additional prompt smaller and below the field input.

In document templates and impute conditions, the value of longtext questions is the text the user entered, as a
string, with rich formatted represented in CommonMark. In document templates, the text is automatically converted
back to rich formatting.

date

This type asks the user for a date.

help text can be specified which provides an additional prompt smaller and below the field input.

In document templates and impute conditions, the value of date questions is a text string in YYYY-MM-DD format.

88 Chapter 4. Authoring Compliance Apps

govready-q Documentation, Release 0.8.6

choice

This type asks the user to choose one of several options. The options are given as:

choices:
- key: pet
text: common pet
help: Is this animal a common pet?

- key: wild
text: wild animal
help: Is this animal an undomesticated wild animal?

The user must select exactly one choice.

The help text is optional. It is displayed smaller and below each choice. (Unlike some other question types, there is
no help field on the question as a whole.)

In document templates and impute conditions, the value of choice questions is the key of the choice selected by the
user. Use questionid.text to access the display text for the choice.

Removing a choice is an incompatible change (see Updating Modules).

yesno

This type is the same as choice but with built-in choices for yes and no. It is the same as a choice question type
with these choices:

choices:
- key: yes
text: Yes

- key: no
text: No

The user must choose either yes or no.

multiple-choice

The multiple-choice question type is similar to the choice question type except that:

• The user can select multiple choices.

• In document templates and impute conditions, the value of multiple-choice questions is a list of the keys
of the choices selected by the user. When used bare, this renders as a comma-separated list of keys. One
can use the ``|length` filter <http://jinja.pocoo.org/docs/dev/templates/#length>`_ and {% for ... in ...
%}... {% endfor %} loops to access the individual choices the user selected. Use questionid.text
to render a comma-separated list of the display text of the selected choices.

• min and max may be specified. If min is specified, it must be greater than or equal to zero and requires that the
user choose at least that many choices. If max is specified, it must be greater than or equal to one (and if min is
specified, it must be at least min) and requires that the user choose at most that number of choices.

Increasing the min or decreasing the max are incompatible changes (see Updating Modules).

4.4. Modules, Questions, and Documents YAML Reference 89

http://jinja.pocoo.org/docs/dev/templates/#length

govready-q Documentation, Release 0.8.6

datagrid

The datagrid question type is similar to the multiple-choice question type except that:

• An array of fields define columns for tabular data (AKA “datagrid”).

• Users can enter as many rows of data as desired.

• Results are usually displayed as a table.

• min and max may be specified. If min is specified, it must be greater than or equal to zero and requires that
the user add at least that many rows. If max is specified, it must be greater than or equal to one (and if min is
specified, it must be at least min) and prevents the user from adding more than that number rows.

Increasing the min or decreasing the max are incompatible changes (see Updating Modules).

integer

This question type asks for a numeric, integer input.

If min and max are set, then the value is restricted to that range. If min is omitted, then negative numbers are allowed!

As with the text question types, placeholder and help text can also be specified.

In document templates and impute conditions, the value of integer questions is the numeric value entered by the
user.

real

This question type asks for a numeric input, allowing for real (floating-point) numbers.

If min and max are set, then the value is restricted to that range. If min is omitted, then negative numbers are allowed!

As with the text question types, placeholder and help text can also be specified and in document templates and
impute conditions the value of these questions is the numeric value entered by the user. .

file

This question type asks the user to upload a file.

help text can also be specified, as in the text question types.

By default, any type of file is permitted to be uploaded. If the optional file-type field is set, the uploaded file is
validated to be of a particular type. Supported values for the file-type field are:

• image: Ensures the file is an image. The uploaded file is converted to PNG format internally.

If file-type is image, then some image transformation can be run, e.g.:

- id: logo
title: Logo
prompt: Upload a logo.
type: file
file-type: image
image:
max-size:

width: 60
height: 60

90 Chapter 4. Authoring Compliance Apps

govready-q Documentation, Release 0.8.6

If image->max-size is given, then the image will be resized prior to being saved internally so that its width and
height do not exceed the given dimensions.

In document templates and impute conditions, the value of these questions is a Python dict (JSON object) containing
url (a download URL) and size (in bytes) fields.

module, module-set

These question type prompt the user to select another completed module as the answer to the question. The
module-id field specifies the ID of another module specification. The module question type allows for a sin-
gle other module to answer the question. The module-set question type allows for zero or more other modules to
answer the question.

The module-id field specifies a module ID as it occurs in the id field of another YAML file in the same application.

Example

Here’s an example of the module question type:

- id: evidence
title: Evidence
type: module
module-id: evidence
prompt: |
Provide evidence of your properly configured firewall, if possible.

impute:
- condition: not(have_other_dmz == 'ad_hoc_dmz')

value: ~

App protocols

Instead of using module-id, a protocol can be specified instead. A protocol is a globally unique identifier that
apps in the Compliance Store use to indicate that their questions and output documents meet a certain criteria (i.e.
implement the protocol). When a user attempts to answer a module or module-set question that uses protocol
instead of module-id, instead of starting a particular named module, the user instead can start any app from the
Compliance Store that implements the protocol.

For example:

- id: evidence
title: Evidence
type: module
protocol: govready.com/apps/compliance/2017/nist-sp-800-171-r1-ssp
prompt: |
Provide evidence of your properly configured firewall, if possible.

When a user answers this question, they will be redirected to the Compliance Store but will be offered only apps that
implement the protocol govready.com/apps/compliance/2017/nist-sp-800-171-r1-ssp.

An app implements a protocol by having a protocol: field at the top level of the app’s YAML specification file with
the same value. For instance, the following app would be offered in the Compliance Store for this example question:

4.4. Modules, Questions, and Documents YAML Reference 91

govready-q Documentation, Release 0.8.6

id: app
title: My App
type: project
protocol: govready.com/apps/compliance/2017/nist-sp-800-171-r1-ssp

Both protocol fields can be either a single string or a list of strings. When the question protocol value is a list, then
only apps which implement all of the listed protocols will be offered.

Question type details

Changing the module-id or protocol is considered an incompatible change (see Updating Modules), and if the
referenced Module’s specification is changed on disk in an incompatible way with existing user answers, the Module
in which the question occurs is also considered to have an incompatible change. Thus an incompatible change in a
module triggers an incompatible change in any other Module that refers to it (and so on recursively).

In document templates and impute conditions, the value of module questions is a dictionary of the answers to that
module. For example, if q5 is the ID of a question whose type is module, then {{q5.q1}} will provide the answer
to q1 within the module the user selected that answers q5.

interstitial

An interstitial question is not really a question at all! The prompt contains template content, as with other
questions, but it is typically longer content with deeper explanatory text. The user is not asked to enter any information.

In document templates and impute conditions, the value of interstitial questions is always a null value.

raw

This type is meant for questions that are always imputed (i.e. that are never presented to the user) and where the
answer value can be any JSON-serializable Python data structure, as given by the impute value (see Imputing Answers
below).

This question type should be avoided if one of the other question types specifies a more narrow data type. For instance,
if the imputed value is always a string, the text or longtext question types should be used instead.

Imputing Answers

The answer to one question may provide the answer to another. In such cases, the latter question is said to have an
imputed value and the user is not asked to answer the question. To impute a value, specify on the question whose value
is being imputed:

impute:
- condition: q1 == 'no'
value: don't know

This example says that if the answer to q1 is no, then the answer to this question is don't know.

The condition is a Jinja2 expression. Any question can be referred to in the expression (by its id). Questions
are tested on their internal values. For choice and multiple-choice questions, their values are their keys, not
their label text, and multiple-choice questions are lists of keys. If condition is omitted, the imputed value is
always taken (i.e. the condition is implicitly met).

92 Chapter 4. Authoring Compliance Apps

http://jinja.pocoo.org/docs/dev/templates/#expressions

govready-q Documentation, Release 0.8.6

The value provided must be a valid value for the question type it is a part of. For choice questions, the value must
be a choice key, not the label text. For multiple-choice questions, the value must be a list of keys.

Multiple condition/value blocks can be provided. They are evaluated in order, with the first matching condition taking
precedence.

impute:
- condition: q1 == 'no'
value: I don't know.

- condition: q1 == 'yes'
value: I do know.

The value field can be evaluated as a Jinja2 expression, just like the condition, if value-mode is set to
expression. This can be used to pull forward the answers of previous questions:

impute:
- condition: q1 == 'same-as-q0'
value: q0
value-mode: expression

value-mode can also be template to evaluate the value as a Jinja2 template, which will yield a text value.

In both conditions and expression-type values, as well as in documents, the variables you can use are:

• ids of questions in the module

• question_id.subquestion_id to access questions within the tasks that are assigned as answers to
module-type questions

• project, which gives the project name

• project.question_id, project.question_id.subquestion_id, etc. to access questions
within the project

• organization, which gives the organization name

We also have a function to retrieve the URL of a module’s static assets, e.g.:

<script src="{{static_asset_path_for('myscript.js')}}"></script>

4.4.5 Question Order

The order in which Questions are asked is determined through an algorithm. The algorithm determines which questions
need to be asked before other questions and which need to be asked in order to generate the output documents.

The only Questions that are asked of the user are those that are mentioned in any of the output templates or other
Questions that required to be asked before those mentioned Questions can be answered.

If a Question mentions another question in its prompt text or impute conditions, the other question must be answered
first. A Question can also list other Questions that should be answered first as:

ask-first:
- q1
- q2

4.4. Modules, Questions, and Documents YAML Reference 93

http://jinja.pocoo.org/docs/dev/templates/#expressions

govready-q Documentation, Release 0.8.6

4.4.6 Updating Modules

When a Module file specification is changed, the change is considered “compatible” or “incompatible” with existing
user answers.

Many changes are “compatible”: Changing the introduction or output documents, question prompts, and adding new
questions and choices are all compatible changes. These changes can be made “live” on any existing user answers.

Other changes are “incompatible”: Removing a choice is an incompatible change because a user may have already
chosen it. Removing a question is incompatible because it would result in a loss of user data.

When there is an incompatible change in a Module specification, a new iteration of the Module will be stored in the
program database but existing user answers will continue to be tied to the previous iteration of the Module specifica-
tion.

94 Chapter 4. Authoring Compliance Apps

CHAPTER

FIVE

AUTOMATION API

GovReady Q Compliance Apps can be updated with information gathered from live systems via the GovReady Q API.
The benefit of this capability is that the documentation produced by GovReady Compliance Apps, such as System
Security Plans (SSPs), can be assembled and updated with actual system data in an automated way.

5.1 Overview of the GovReady Q API

The GovReady Q API provides read and write access to the information stored in GovReady Q’s question-and-answer
data model. It is a RESTful API using HTTP GET and POST requests, API keys that are issued per user, and JSON
for request and response data.

Each GovReady Compliance App provides a separate API, and each app’s API is composed of fields for the same
information the app would ask an end-user using the Q website in a web browser. The app’s definition of questions to
ask the end user (see Modules, Questions, and Documents) also define the data model of the API.

As an example, the screenshot below shows a demonstration of a macOS File Server compliance app. The app asks
questions about the hostname of the server and the use of security groups.

95

Schema.html

govready-q Documentation, Release 0.8.6

The answers to these questions can be both read from Q and written to Q using a JSON data structure:

{
"schema": "GovReady Q Project API 1.0",
"project": {
"file_server": {

"hostname": "twiggie",

"login_message": "/etc/issue:\n\n```Ubuntu 16.04.3 LTS \\n \\l```",
"login_message.html": "<p>/etc/issue:</p>\n<p><code>Ubuntu 16.04.3 LTS

\\n \\l</code></p>",

"using_security_groups": "yes",
"using_security_groups.text": "Yes"

"security_groups_description": "There are 17 UNIX groups: `adm` (2 users:
`syslog`, `user`), `audio` (2 users: `speech-dispatcher`, `pulse`), ...",

"security_groups_description.html": "<p>There are 17 UNIX groups: <code>
adm</code> (2 users: <code>syslog</code>, <code>user</code>), ..."

}
}

}

The second question, shown below, is a yes-no question. In the web browser this question appears as a radio select
question with Yes and No choices. In the JSON data structure, shown above, it is encoded as the JSON strings "yes"
or "no".

96 Chapter 5. Automation API

assets/macosapp.png

govready-q Documentation, Release 0.8.6

Each compliance app that has been started in GovReady Q and added to a project folder provides an API Docs page
with samples and data schema documentation:

5.1. Overview of the GovReady Q API 97

assets/macosapp_q1.png
assets/macosapp_api.png

govready-q Documentation, Release 0.8.6

5.2 Using the Compliance API

To use a compliance app API, an app must already be started in GovReady Q by adding it to a project folder and its
modules must be started (but need not be completed) for them to be accessible from the API.

5.2.1 API keys

Every call to the API requires an API key. Each user has three API keys listed on their API Keys page, which can be
found in the user drop-down menu on Q: a read-only API key, a read-write API key, and a write-only API key:

• The read-only API key gives external tools the ability to see all data values that the associated user can see on
Q, but the API key cannot be used to change any data values.

• The read-write API key gives external tools the ability to see and make changes to anything the associated user
can see and make changes to on Q.

• The write-only API key gives external tools the ability to make changes to anything the associated user can
make changes to on Q but does not include the ability to see any data values stored in Q. The write-only key
is useful in situations where the external tool needs to be able to upload data but does not need to read existing
data values.

5.2.2 Getting data from the app using the GET API

Project data can be read from the API using an HTTP GET request to a URL of the following pattern:

{site base URL}/api/v1/projects/{project id}/answers

The complete URL can be found on the API Docs page for a compliance app that has been started and added to a
project folder.

An API key must be passed in the HTTP Authorization header. You can get your API key from the API Keys
page, which is found in the site header menu in the user drop-down.

The API response is a JSON data structure similar to the example above. The schema of the response object is
documented on the app’s API Docs page. Further information can also be found below.

If you are using an operating system with a command line and the curl tool, you can try out the API by running:

curl --header "Authorization: {your-api-key}" \
{site base URL}/api/v1/projects/{project id}/answers

5.2.3 Updating data using a POST request with form data

There are two types of POST requests that can be used to update app data. In the first type, described in this section,
data values are provided as key-value pairs using the regular web browser form submission method. (In the second
form, described below, answers are provided using a JSON data structure that is formatted the same as the JSON data
structure returned by a GET request, which may be more appropriate when submitting non-textual and non-binary
content.)

In each of the key-value pairs submitted in the POST request, the key is a dotted-path question ID. The key always
begins with project. and is followed by the property names on the path to the question being updated, according
to the JSON data structure, with property names separated by the . character.

The value of each key-value pair is an answer submitted either as plain text or, for file-type questions, as a binary file.
If submitted as plain text and the question expects non-text data, such as a number, the value will be converted. When
uploading a binary file, the multipart/form-data content type must be used for the POST request.

98 Chapter 5. Automation API

https://tools.ietf.org/html/rfc2388

govready-q Documentation, Release 0.8.6

As with the GET API, an API key must be passed in the HTTP header. An API key with write permission must be
used. You can get an API key from the API keys page on your Q site.

If you are using an operating system with a command line and the curl tool, you can try out the API by running:

curl \
--header "Authorization: <i>your-api-key</i>" \
-F project.question.subquestion1=datavalue \
-F project.question.subquestion2=datavalue \
{site base URL}/api/v1/projects/{project id}/answers

For a file upload, use -F @filename.ext. curl’s -d option can be used in place of -F if none of the
fields are file uploads.

5.2.4 Updating data using a POST request with JSON

Use a POST request instead a GET request to the same URL to update data stored in the app. Data values to save in
the app are included in the request body as JSON in the same format as returned by the GET request.

The POST request body always includes:

{
"schema": "GovReady Q Project API 1.0",
"project": {
...

}
}

Answer data is placed inside the project field.

As with the GET API, an API key must be passed in the HTTP Authorization header. An API key with write
permission must be used. You can get your API key from the API Keys page, which is found in the site header menu
in the user drop-down.

If you are using an operating system with a command line and the curl tool, you can try out the API by placing the
JSON request data in a file named data.json and then running:

curl --header "Authorization: {your-api-key}" \
-XPOST --data @data.json --header "Content-Type: application/json" \
{site base URL}/api/v1/projects/{project id}/answers

5.3 API Data Schema

Each compliance app documents its data schema on its API Docs page, which can be found inside the compliance app
after it has been started and added to a project folder.

Each question defined by the app — which it would ask an end-user when in a web browser — is exposed as a field in
the JSON data structure. The field types are:

• Text, password, email-address, and URL fields: Encoded as a JSON string. Email-address fields must contain
valid email addresses. URL fields must contain valid URLs.

• Long text fields, which hold multi-paragraph text: Encoded as a JSON string with formatting expressed in
CommonMark (i.e. Markdown).

• Date fields: Encoded as a JSON string in YYYY-MM-DD format.

5.3. API Data Schema 99

http://commonmark.org/

govready-q Documentation, Release 0.8.6

• Single-choice and yes-no fields: Encoded as a JSON string holding a programmatic identifier for the selected
choice. Yes-no fields use the identifiers yes and no.

• Multiple-choice fields: Encoded as a JSON array of strings, where each string is a programmatic identifier for a
selected choice.

• Datagrid fields: Encoded as a JSON array of dictionaries, where each dictionary describes the row of data fields.

• Integer and real number fields: Encoded as a JSON number. Integer fields must contain integer values.

• File fields: Encoded as a JSON object containing the properties url (a link to download the file content), type
(the MIME type), and size (the size of the file in bytes).

• “Module” questions create recursive structures and are encoded as JSON objects. “Module-set” questions are
encoded as JSON arrays of JSON objects.

All fields can also hold null, which indicates the question has been explicitly “skipped.” If a question is unanswered,
it does not appear in the API.

Single-choice, multiple-choice, and yes-no fields also appear in human-readable form as a second read-only field that
uses a .text suffix in the field’s name.

Long text fields have an HTML display form, in which the CommonMark is pre-rendered, in a parallel field with a
.html suffix in the field’s name. These fields cannot be used in the POST API.

Datagrid fields appear in human-readable form as tabular data.

More information about Q’s data types can be found in Modules, Questions, and Documents.

100 Chapter 5. Automation API

Schema.html

CHAPTER

SIX

DATA DESIGN GUIDE

The documents in this section describe GovReady-Q’s database design.

6.1 Users, Organizations, Projects, Folders, and Invitations

The diagram below provides a summary representation of GovReady-Q’s Django siteapp data model, which han-
dles users, organizations, projects and folders, and invitations.

The siteapp data model represents users who have membership in different projects. Users must be invited to projects.
Projects belong to organizations.

101

assets/govready-q-siteapp-erd.png

govready-q Documentation, Release 0.8.6

Access control is based on organization and projects. Information cannot be shared across organizations and only
limited information can be shared across projects within an organization.

6.2 Compliance Apps, Modules, Questions, Tasks, and Answers

GovReady-Q is a governance, risk, and compliance platform for creating automated compliance processes ranging
from gathering information from persons and computers to generating compliance artifacts.

Information gathering is at the heart of GovReady-Q’s guidedmodules data model, which handles compliance
apps, modules, questions, tasks, and answers. Eight database tables make up the guidedmodules data model. The
complete data model spans three categories:

1. Compliance apps, which are reusable packages of questions, business logic, and document templates, are defined
by the database tables AppSource, AppVersion, Module, ModuleQuestion, and ModuleAsset.
Many compliance apps, and different versions of the same compliance app, can be in use simultaneously.

2. Information submitted by end-users to answer compliance app questions, as well as information sub-
mitted through the GovReady-Q API, is stored in the database tables Task, TaskAnswer, and
TaskAnswerHistory.

3. Imputed answers and documents generated by the business logic stored in compliance apps, which are computed
on-the-fly.

The tables are described is additional detail below and their relationships are summarized in the following diagram:

102 Chapter 6. Data Design Guide

assets/govready-q-guidedmodules-erd.png

govready-q Documentation, Release 0.8.6

6.2.1 Compliance Apps (Questions, Business Logic, and Templates)

The smallest unit of a compliance app is a Question. Questions come in different types, such as text, number,
and date (full list). Questions are grouped into questionnaires called Modules. And Modules are grouped into
AppVersion, which are the versions of a compliance app that are loaded into the GovReady-Q database. AppVer-
sions are loaded from AppSources, which define how to load compliance apps from remote sources such as GitHub or
an on-premesis enterprise source control system.

AppVersion, Modules, and Questions define the structure of a compliance app but do not store any user-
submitted content. Separating structure from content is a common pattern in application design and is motivated by
several GovReady-Q goals:

• Compliance apps are reusable and can be easily loaded into different installs of GovReady-Q at different orga-
nizations.

• Anyone can author compliance apps and they can be kept private or shared publicly.

• One type of Question allows the user to choose a complete set of answers to another Module, which allows
question answers (i.e. user data) to be accessed from the business logic and templates of not only the Modules
the Questions are defined in but also from other Modules and even other compliance apps.

• Compliance apps are versioned and apps that have been started by users can be updated in non-destructive ways,
preserving answered questionnaires over the course of years,

GovReady-Q administrators will configure GovReady-Q with an AppSource record for each source of compliance
apps that will be made available to GovReady-Q users. Each AppSource has a “slug,” which is its unique name on
the GovReady-Q installation. An AppSource also defines a remote location — such as a GitHub repository, local
directory, or on-premise git server — to query for compliance apps, which will be listed in the app catalog. A typical
GovReady-Q installation might have one AppSource providing compliance apps published by GovReady PBC and a
second AppSource for providing compliance apps defined by the organization. Each AppSource defines the remote
location as well as local permissions such as which compliance apps in the store to make available to GovReady-Q
users and Organizations. See App Sources for more information.

Each time a compliance app is started by a user, an AppSource is queried for the latest version of the selected
compliance app and an AppVersion is created that holds the complete set of questions, business logic, and templates
defined in that version of the compliance app. Therefore there will be a separate AppVersion in the database for every
version of every compliance app being used by GovReady-Q users.

Each AppVersion links back to the AppSource it was created from (the “source” field) and holds the name it was given
(the “appname” field). Each AppVersion brings along with it the Modules and Questions defined in that version
of the compliance app. In other words, Modules and Questions are specific to a AppVersion. Therefore if two versions
of a compliance app are present in the database, a question that exists in both versions of the app is represented as
two Question records — one for each version of the app. Similarly, there will be (at least) two Modules, one for each
version of the app.

All compliance apps have at least two Modules. The first module, whose “module_name” identifier is always app,
defines the layout of the starting page of a compliance app, which can list one or more Modules to complete:

6.2. Compliance Apps, Modules, Questions, Tasks, and Answers 103

Schema.html
AppSources.html

govready-q Documentation, Release 0.8.6

or a collection of modules and slots to start other compliance apps:

In both cases, the “cards” that represent modules to answer or slots for compliance apps to start are defined by

104 Chapter 6. Data Design Guide

assets/fisma_level_app.png
assets/generic_website_app.png

govready-q Documentation, Release 0.8.6

Questions in the “app” Module. When a user starts a module or selects a compliance app, that is recorded in
the database as answering the respective Question in the “app” Module (more on that below).

Besides listing questions, Modules also define zero or more output documents. Each output document is generated
by combining a template stored in the Module with user answers.

Similar to Modules, ModuleQuestions have a “key” field that uniquely identifies them within the Module they are
defined in. ModuleQuestions store the question type (text, date, etc.), the prompt shown to users, impute conditions
(see below), and other metadata.

ModuleAssets store a compliance app’s static assets used by the app’s templates. These assets often appear as
images or other embedded media in output documents generated by the compliance app.

6.2.2 User Answers (Tasks and Answers)

When a user is completing the questions in a compliance app, their answers are stored in a separate set of database
tables distinct from the tables used to store compliance app questions, business logic, and templates. The tables that
hold answers are Task, TaskAnwser, and TaskAnswerHistory.

Task and TaskAnswer are parallel tables to Module and ModuleQuestion and are related to where user an-
swers are stored. A Task is the instantiation of a Module that a GovReady-Q user or set of users are completing. A
TaskAnswer is the instantiation of a ModuleQuestion that a GovReady-Q user has answered. All of the Tasks
instantiated together for the same compliance app are related through the “project” field.

TaskAnswerHistory stores the complete history of user answers related to a TaskAnswer, i.e. to an instantiated
question. The current answer to a question and its associated metadata are stored in the most recent TaskAnswer-
History record for a particular TaskAnswer (the one with the highest “id” value — “id”s are assigned to answers in
strictly increasing order). Therefore only the most recent TaskAnswerHistory record for a TaskAnswer holds a current
answer, and earlier TaskAnswerHistory records are for audit logging and tracking changes.

TaskAnswerHistory records have a “stored_value” field which holds the user’s answer encoded in JSON, other meta-
data such as “answered_by” for which user provided the answer, “skipped_reason” and “unsure” which are flags set if
the user skipped the question or wants to return to it later, and “reviewed” which holds workflow review state (e.g. if
a reviewer marks the answer as approved).

This data model supports GovReady-Q design goals, such as:

• Compliance app modules and questions can be assigned to different users to answer.

• The answer to questions may change while a complete history of answers are preserved in an immutable record,
including preserving past answer metadata such as who answered the question and whether the answer was
approved by a reviewer.

• Answers are strongly typed: text, numbers, dates, choices, and so on are encoded in a JSON representation that
preserves their data type.

• All questions can be skipped by storing null in “stored_value.”

6.2. Compliance Apps, Modules, Questions, Tasks, and Answers 105

govready-q Documentation, Release 0.8.6

6.2.3 Imputed Answers and Output Documents

Compliance apps hold business logic and templates that are used to “impute” answers to questions and generate output
documents, respectively. These computational outputs are not stored in the database. Instead, they are computed on-
the-fly by GovReady-Q as they are needed, and the results of the computations are cached so long as they remain
valid.

Imputed Answers

Imputation uses business logic rules to infer the answer to questions based on previous answers to questions. Imputa-
tion is used for a variety of purposes, such as:

• Hiding questions that are not applicable based on the answers to previous questions, by imputing null as the
answer to the question.

• Pre-answering questions when the answer is known based on the answers to previous questions.

• Running business logic computations, such as computing a grade or gap analysis, and storing the result of the
computation as the answer to the imputed question.

Questions whose answers are imputed are not asked of the user — the user may never see these questions at all. Some
questions are designed to always be imputed to support the execution of business logic rules.

The results of imputation are not stored in the database because they are computed on-the-fly to ensure that the
GovReady-Q always runs the business logic rules on the most recent, current set of answers to the questions. As a
result, there may be no TaskAnswer or TaskAnswerHistory records for questions that have been imputed.

In certain circumstances, a question’s answer may be imputed after a user already provided an answer to the question.
In such cases, the user’s answer remains in the database and appears in the database as the current answer to the
question. However, when visiting GovReady-Q, imputed answers supersede user answers and only the imputed value
will be used.

Output Documents

Compliance apps produce output documents. Each output document is generated by combining a template with the
answers to questions (both user-inputted and imputed). Templates are typically written using Markdown syntax and
are displayed in GovReady-Q as HTML documents, but they typically can also be downloaded in other formats such
as a Microsoft Word document or PDF.

As with imputation, output documents are generated on-the-fly when they are viewed by GovReady-Q users. The
generated documents are not stored in the database because they are computed on-the-fly to ensure that the GovReady-
Q always runs the template on the most recent, current set of answers to the Module’s questions. As a result, there is
no database table for output documents.

6.2.4 Database Query Examples

Example: Find all approved answers to a particular question across users and tasks

Scenario: Unix File Server App contains a text-type question named “Hostname”. Many users have finished answer-
ing all of the questions in the app. However, our reviewers have only approved some of the answers so far. I want to
write an SQL query to return all approved answers to the “Hostname” question.

In this section, we will build up an SQL query to extract the data identified in the scenario. The query will be built
progressively over the next several sections to explain the rationale behind the GovReady-Q data model. Some of
GovReady-Q’s design choices — including separating the definitions of compliance apps from user-submitted data, as

106 Chapter 6. Data Design Guide

govready-q Documentation, Release 0.8.6

well as recording an immutable history of user answers — are reflected in the SQL queries below. The complete SQL
query is shown at the end.

You may prefer to use the GovReady-Q API instead of writing a low-level database query, but this example is illustra-
tive for understanding GovReady-Q’s data model no matter which method you use to query the data.

Find the AppVersions

First locate the AppSource “slug” and AppVersion “appname” that identifies a compliance app in GovReady-Q’s
database. Find the app in the compliance apps catalog and click its Info button:

The slug and the appname of the compliance app can be found in the URL:

http://mygovreadyq/store/myapps/unix_file_server

In this case the slug is “myapps” and the appname is “unix_file_server”. These two fields identify the compliance app
across its versions.

Construct an SQL query to return the numeric IDs of the AppVersions in the database for this compliance app. Each
AppVersion may be a different version of the compliance app or a different instance of the same app in use by different
users.

SELECT guidedmodules_appversion.id
FROM guidedmodules_appversion
LEFT JOIN guidedmodules_appsource

ON guidedmodules_appsource.id = guidedmodules_appversion.source_id
WHERE guidedmodules_appsource.slug = "myapps"

AND guidedmodules_appversion.appname = "unix_file_server";

This query will be adapted in the next section to find the hostname question.

Find the ModuleQuestions

Consult the compliance app source code YAML files to determine the “module_name” of the Module and “key” of
the ModuleQuestion — which are in the “id” fields in the YAML file.

6.2. Compliance Apps, Modules, Questions, Tasks, and Answers 107

assets/unix_server_app_catalog_entry.png
http://mygovreadyq/store/

govready-q Documentation, Release 0.8.6

The Module containing the hostname question has “file_server” as its module_name, and the ModuleQuestion’s
key is “hostname.”

Construct a preliminary SQL query to find all of the ModuleQuestion records for this question:

SELECT guidedmodules_modulequestion.id
FROM guidedmodules_modulequestion
LEFT JOIN guidedmodules_module

ON guidedmodules_module.id = guidedmodules_modulequestion.module_id
WHERE guidedmodules_module.module_name = "file_server"

AND guidedmodules_modulequestion.key = "hostname";

This query might be too broad — it does not restrict the questions to those defined in the Unix File Server compliance
app. There might be other compliance apps that use the same module_name and question key. Combine the first two
queries to ensure only questions in the Unix File Server app are returned using a LEFT JOIN to bridge the tables:

SELECT guidedmodules_modulequestion.id
FROM guidedmodules_modulequestion
LEFT JOIN guidedmodules_appsource

ON guidedmodules_appsource.id = guidedmodules_appversion.source_id
LEFT JOIN guidedmodules_appversion

ON guidedmodules_appversion.id = guidedmodules_module.app_id
LEFT JOIN guidedmodules_module

ON guidedmodules_module.id = guidedmodules_modulequestion.module_id
WHERE guidedmodules_appsource.slug = "myapps"

AND guidedmodules_appversion.appname = "unix_file_server"
AND guidedmodules_module.module_name = "file_server"
AND guidedmodules_modulequestion.key = "hostname";

We’ll call this query MODULE_QUESTIONS — we’ll use it as a sub-query in the next step.

108 Chapter 6. Data Design Guide

assets/unix-server-hostname-question.png

govready-q Documentation, Release 0.8.6

Find the history of answers

GovReady-Q has been designed so that separate tables contain the definition of the question and the user-submitted
answers to the question. Each answer is connected to a ModuleQuestion through a TaskAnswer. Locate the
TaskAnswers for the questions:

SELECT guidedmodules_taskanswer.id
FROM guidedmodules_taskanswer
WHERE guidedmodules_taskanswer.question_id IN (MODULE_QUESTIONS);

Replace MODULE_QUESTIONS with the preceding SQL query, inserting it as a sub-query.

The TaskAnswer table does not hold user answers, however. Answers are stored in the TaskAnswerHistory table
where the complete history of answers to questions are stored. We’ll now adapt the query to fetch the history of answers
to this question, including some metadata about the answers, by using a LEFT JOIN to bridge the TaskAnswerHistory
table and the TaskAnswer table:

SELECT guidedmodules_taskanswer.id, answer.stored_value, answer.created, siteapp_user.
→˓username
FROM guidedmodules_taskanswerhistory AS answer
LEFT JOIN guidedmodules_taskanswer

ON guidedmodules_taskanswer.id = answer.taskanswer_id
LEFT JOIN siteapp_user

ON siteapp_user.id = answer.answered_by_id
WHERE guidedmodules_taskanswer.question_id IN (MODULE_QUESTIONS);

Here is an example result:

Task Answer Stored Value Created Username
10 “server1.company.com” 2018-05-19 20:33 user1
10 “server2.company.com” 2018-05-20 10:15 user1
10 null 2018-05-20 10:35 user1
11 “server2.company.com” 2018-05-19 16:20 user2

This is the complete history of answers for the “hostname” question in two separate Tasks, i.e. two instantiations of the
compliance app started by different users. The two instantiations of the question are identified by their TaskAnswer
“id”s, 10 and 11.

The history for TaskAnswer 10 has three rows. Two rows – the first two — reflect old answers to questions. This
indicates the user returned to the question twice. On the first occasion, the user replaced the original answer with
"server2.company.com". On the second revisit, the user replaced the original answer with null, clearing the
answer because the user decided they didn’t know the answer or the question didn’t apply to them.

The second TaskAnswer was answered once.

We’ll adapt this query in the next step to fetch just the current (most recent) answer in each Task.

6.2. Compliance Apps, Modules, Questions, Tasks, and Answers 109

govready-q Documentation, Release 0.8.6

Find the current answer to each question

The current answer for each question is stored in the TaskAnswerHistory record with the highest “id” for each
TaskAnswer. The IDs in the TaskAnswerHistory table are assigned strictly sequentially. To determine which TaskAn-
swerHistory record holds the current answer, use GROUP BY and max to fetch one TaskAnswerHistory for each
TaskAnswer:

SELECT max(answer.id)
FROM guidedmodules_taskanswerhistory AS answer
LEFT JOIN guidedmodules_taskanswer

ON guidedmodules_taskanswer.id = answer.taskanswer_id
LEFT JOIN siteapp_user

ON siteapp_user.id = answer.answered_by_id
WHERE guidedmodules_taskanswer.question_id IN (MODULE_QUESTIONS)
GROUP BY guidedmodules_taskanswer.id;

id
103
104

This result holds the current answers to the hostname question. We’ll call this query CURRENT_ANSWERS — we’ll
use it as a sub-query in the next query.

To fetch the answers and metadata but for the current answers, we’ll query the TaskAnswerHistory table using
the CURRENT_ANSWERS query as a sub-query to identify just the rows that are current answers to questions:

SELECT taskanswer_id, stored_value, created, username, reviewed
FROM guidedmodules_taskanswerhistory
LEFT JOIN siteapp_user

ON siteapp_user.id = answered_by_id
WHERE guidedmodules_taskanswerhistory.id IN (CURRENT_ANSWERS);

Here is an example result:

Task Answer Stored Value Created Username Reviewed
10 null 2018-05-20 10:35 user1 0
11 “server2.company.com” 2018-05-19 16:20 user2 2

This result holds the current answers to the Unix File Server hostname question across all instances of the compliance
app in the GovReady-Q installation. Notice that the rows in the previous table that represented replaced answers to
the first TaskAnswer are omitted from the results in this query and only the current answer for each Task is included.

The “stored_value” column holds the user’s answer encoded in JSON. In JSON, text (strings) are enclosed in double
quotes. Therefore we know that the second answer is text. In JSON, null (without double quotes around it) represents
an empty value — in GovReady-Q, that means the user skipped the question choosing I Don’t Know, It Doesn’t Apply,
or I’ll Come Back.

We’ll modify this query in the next section to filter on the reviewed status of each answer.

110 Chapter 6. Data Design Guide

govready-q Documentation, Release 0.8.6

Filter on approved answers

The “reviewed” field of TaskAnswerHistory stores GovReady-Q’s simple workflow status of the answer. The
values are 0 (not reviewed), 1 (reviewed), and 2 (approved). To select just approved answers, add a WHERE clause
to the previous SQL query:

SELECT taskanswer_id, stored_value, created, username, reviewed
FROM guidedmodules_taskanswerhistory
LEFT JOIN siteapp_user

ON siteapp_user.id = answered_by_id
WHERE guidedmodules_taskanswerhistory.id IN (CURRENT_ANSWERS)

AND reviewed = 2;

The query extracts the answers in a structure similar to the following table:

Task Answer Stored Value Created Username Reviewed
11 “server2.company.com” 2018-05-19 16:20 user2 2

This is the complete query to extract the approved answers to the hostname question in the Unix File Server compliance
app. The query has been simplified by replacing a sub-query with CURRENT_ANSWERS, which itself has a sub-query
that has been replaced by MODULE_QUESTIONS. Both sub-queries can be found above.

6.3 Discussions

The diagram below provides a summary representation of GovReady-Q’s Django discussion data model that
handles discussions, comments, and invitations.

6.3. Discussions 111

govready-q Documentation, Release 0.8.6

A single discussion can be instantiated and associated to any task (task ~= “question”). A discussion can have multiple
comments. Comments can have multiple attachments.

6.4 Generating Detailed Data Models

Below are instructions to use django-extensions to generate detailed data models.

Install django-extensions
http://django-extensions.readthedocs.io/en/latest/installation_instructions.html
apt install graphviz-dev
pip3 install django-extensions pygraphviz

Add django-extensions INSTALLED_APPS in siteapp > settings.py
INSTALLED_APPS = (
...
'django_extensions',
)

examples:
python3 manage.py graph_models -a -g -o my_project_visualized.png
python3 manage.py graph_models -a -o my_project.png
python3 manage.py graph_models -a > my_project.dot
for a single django app:

(continues on next page)

112 Chapter 6. Data Design Guide

assets/govready-q-discussion-erd.png

govready-q Documentation, Release 0.8.6

(continued from previous page)

python3 manage.py graph_models app1 -o my_project_app1.png

6.4. Generating Detailed Data Models 113

govready-q Documentation, Release 0.8.6

114 Chapter 6. Data Design Guide

CHAPTER

SEVEN

TESTING

7.1 Running Tests

GovReady-Q’s unit tests and integration tests are currently combined. Our integration tests uses Selenium to simulate
user interactions with the interface.

To run the integration tests, you’ll also need to install chromedriver:

sudo apt-get install chromium-chromedriver (on Ubuntu)
brew cask install chromedriver (on Mac)

Navigate within your terminal to GovReady-Q top level directory.

Then run the test suite with:

./manage.py test

NOTE: Depending on your Python3 configuration, you may need to run:

python3 manage.py test

To selectively run tests from individual modules:

test rendering of guided modules
./manage.py test guidedmodules

test general siteapp logic
./manage.py test siteapp

test discussion functionality
./manage.py test discussion

Or to selectively run tests from individual classes or methods:

run tests from individual test class
./manage.py test siteapp.tests.GeneralTests

run tests from individual test method
./manage.py test siteapp.tests.GeneralTests.test_login

115

govready-q Documentation, Release 0.8.6

7.2 Test Coverage Report

To produce a code coverage report, run the tests with coverage:

coverage run --source='.' --branch manage.py test
coverage report

7.3 Code Scanning and Analysis

GovReady-Q is a Python web application written on top of the Django framework and uses a variety of industry
standard Javascript libraries. See Software Requirements for high level view and the requirement*.txt files for
detailed view.

GovReady-Q’s Python application code is found in the *.py files in the following directories and their subdirectories:

• discussion/

• guidedmodules/

• siteapp/

The small manage.py script in the root directory is part of the Django framework. We use bash utilities scripts
(*.sh) to automate installation and maintenance tasks of the code base. Python scripts in .circleci directory are
used within our Continuous Implementation pipeline.

7.3.1 Simple Static Code Analysis

To run a static code analysis with our typical settings:

bandit -s B101,B110,B603 -r discussion/ guidedmodules/ siteapp/

We use -s on the command-line and nosec in limited places in the source code to disable some checks that are
determined after review to be false positives.

7.3.2 Detailed Static and Dynamic Code Analysis

We periodically scan GovReady-Q’s code base with more traditional/powerful tools and remediate critical and high
vulnerabilities.

To scan GovReady-Q’s codebase, you will need to configure your tools to scan Python code. You are looking for the
*.py files across the code base.

To scan or do other penetration tests on the code base, we recommend deploying GovReady-Q with Docker.

116 Chapter 7. Testing

requirements.html#software-requirements
deploy_docker.html

govready-q Documentation, Release 0.8.6

7.4 Dependency Management and Vulnerability Testing

Our requirements.txt file is designed to work with pip install --require-hashes, which ensures
that every installed dependency matches a hash stored in this repository. The option requires that every dependency
(including dependencies of dependencies) be listed, pinned to a version number, and paired with a hash. We therefore
don’t manually edit requirements.txt. Instead, we place our immediate dependencies in requirements.
in and run requirements_txt_updater.sh (which calls pip-tools’s pip-compile command) to update the
requirements.txt file for production.

Continuous integration is set up with CircleCI at https://circleci.com/gh/GovReady/govready-q and performs unit tests,
integration tests, and security checks on our dependencies.

1. CI runs requirements_txt_checker.sh which ensures requirements.txt is in sync with
requirements.in. This script is set up to run against any similar files as well, such as MySQL-specific
requirements_mysql.* files.

2. CI checks that there are no known vulnerabilities in the dependencies using pyup.io.

3. CI checks that all packages are up to date with upstream sources (unless the package and its latest upstream
version are listed in requirements_txt_checker_ignoreupdates.txt).

7.5 Populating sample data for manual testing and verification

In some cases, you may wish to perform manual testing on an instance of GovReady-Q which has been populated with
data. Several Django commands have been added to facilitate this, in the testmocking module. Generated data is
intended to be structurally similar to what might be found in a real GovReady-Q instance, but the actual content of the
data will often appear machine-generated.

If you wish to get up and running quickly, the following command is recommended:

python3 manage.py add_data --non-interactive

The add_data command will fill in a recommended set of sample data.

7.4. Dependency Management and Vulnerability Testing 117

https://circleci.com/gh/GovReady/govready-q
https://pyup.io/

govready-q Documentation, Release 0.8.6

118 Chapter 7. Testing

CHAPTER

EIGHT

VERSION 0.9.0

8.1 What’s New in 0.9.0

Release 0.9.0 (coming Autumn 2019) is a minor release improving the user experience and performance.

• Faster loading and launching of Assessments/questionnaires

• Simplified install with no subdomains to worry about

• Replaces subdomain multi-tenancy with simplified “Portfolios” model

• Improved authoring screens

• Helpful new start page

• Adds and updates portfolio level permissions

Release 0.9.0 removes multi-tenancy and serves all pages from the same domain. In the earlier multi-tenancy ver-
sions, requests to GovReady-Q came in on subdomains: the subdomain determined which organization to associate
with the request, and individuals had to re-login across subdomains. Little value was being realized by actual users
for the subdomain-based multi-tenancy. Removing subdomain-based multi-tenancy reduces technical debt simplifies
deployment.

This release’s compliance apps catalog now reads from the database rather than constantly rescanning remote repos-
itories and the file system. The app catalog cache is removed since the page loads much faster. Release 0.9.0 begins
to replace the “compliance app” terminology with the plain language “projects” and “assessment” terminology in end
user pages.

This release also introduces a “Portfolios” feature to organize and manage related projects.

For a complete list of changes see the 0.9.0.dev branch CHANGELOG.

Release 0.9.0 progress can be found on the 0.9.0.dev and 0.9.0.rc-xxx branches.

119

https://github.com/GovReady/govready-q/blob/0.9.0.dev/CHANGELOG.md

govready-q Documentation, Release 0.8.6

8.2 Screenshots

8.2.1 Sign-in Page

0.8.6 (Old Version) 0.9.0 (New Version)

8.2.2 Projects List Page

0.8.6 (Old Version) 0.9.0 (New Version)

120 Chapter 8. Version 0.9.0

govready-q Documentation, Release 0.8.6

8.2.3 Portfolios (New in 0.9.0)

0.8.6 (Old Version) 0.9.0 (New Version)

Feature did not exist

Feature did not exist

8.2. Screenshots 121

govready-q Documentation, Release 0.8.6

8.2.4 Module View

0.8.6 (Old Version) 0.9.0 (New Version)

8.2.5 Question Page

0.8.6 (Old Version) 0.9.0 (New Version)

122 Chapter 8. Version 0.9.0

govready-q Documentation, Release 0.8.6

8.3 Release Date

The target release date for 0.9.0 is Autumn 2019.

8.4 Upgrading to 0.9.0 from 0.8.x

Backup your database before upgrading to 0.9.0. Release 0.9.0 performs database changes that makes rolling
back difficult.

See Migration Guide for GovReady-Q (0.8.6 to 0.9.0).

8.5 Installing 0.9.0

Release 0.9.0 simplifies the installation of GovReady-Q by removing the need to manage subdomain-based multi-
tenancy.

Three example assessments are preloaded during the install of 0.9.0 to demonstrate the experience of using GovReady-
Q.

The installation of assessments (aka “Compliance Apps”) requires an extra step in 0.9.0 but greatly improves user
experience.

Click one of the tab belows to see quickstart for indicated platform.

Docker

Installing with Docker

Make sure you first install Docker (https://docs.docker.com/engine/installation/) and, if appropriate, grant non-
root users access to run Docker containers (https://docs.docker.com/engine/installation/linux/linux-postinstall/
#manage-docker-as-a-non-root-user) (or else use sudo when invoking Docker below).

Start

Create a local directory for authoring Q assessment files
mkdir -p /path/to/govready-q-files
mkdir -p /codedata/code/govready-q-files

Run the docker container in detached mode
docker container run --detach --name govready-q -p 127.0.0.1:8000:8000 \
-e HOST=localhost -e PORT=8000 -e HTTPS=false -e DBURL= -e DEBUG=true \
govready/govready-q-0.9.0.dev

Create admin account and organization data if setting up a new database
docker container exec -it govready-q first_run

Stop, start container (when needed)
docker container stop govready-q
docker container start govready-q

View logs - useful if site does not appear

(continues on next page)

8.3. Release Date 123

migration_guide_086_090.md
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/linux/linux-postinstall/#manage-docker-as-a-non-root-user
https://docs.docker.com/engine/installation/linux/linux-postinstall/#manage-docker-as-a-non-root-user

govready-q Documentation, Release 0.8.6

(continued from previous page)

docker container logs govready-q

To destroy the container and all user data entered into Q
docker container rm -f govready-q

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

Dockerized GovReady-Q supports additional options. Below is a more complete example

parameters available.

Run the docker container in detached mode
docker container run --detach --name govready-q -p 127.0.0.1:8000:8000 \
-e HOST=localhost -e PORT=8000 -e HTTPS=false -e DBURL= -e DEBUG=true \
-e EMAIL_HOST= -e EMAIL_PORT= -e EMAIL_USER= -e EMAIL_PW= -e EMAIL_DOMAIN= \
--mount type=bind,source="$(pwd)",target=/mnt/q-files-host \
govready/govready-q-0.9.0.dev

Alternatively, we offer a shell script that helps launch GovReady-Q. Do the following to download the shell script and
launch GovReady-Q docker container.

cd /path/to/working/dir

Get the docker_container_run.sh shell script
wget https://raw.githubusercontent.com/GovReady/govready-q/master/deployment/docker/
→˓docker_container_run.sh

Make it executable
chmod +x docker_container_run.sh

./docker_container_run.sh --name govready-q --relaunch --debug -v --appsdevdir /
→˓codedata/code/govready-q-files --image govready/govready-q-0.9.0.dev

Logs for Debugging

The container’s console shows the output of container’s start-up commands including database migrations and process
startup. The container’s console log can be accessed with

docker container logs govready-q-0.9.0

GovReady-Q application logs can be found in /var/log within the container to track status and assist with debugging.
These files contain access logs and other program output.

• /var/log/application-stderr.log - GovReady-Q application standard error

• /var/log/application-stdout.log - GovReady-Q application standard out

• /var/log/notificationemails-stderr.log - GovReady-Q email notifications standard error

• /var/log/notificationemails-stdout.log - GovReady-Q email notifications standard error

• /var/log/supervisord.log - Supervisor daemon

124 Chapter 8. Version 0.9.0

http://localhost:8000/

govready-q Documentation, Release 0.8.6

Debugging “Internal Server Error” Messages

A special management command can be used to see the application log files to debug unhandled “Internal Server
Error” (HTTP code 500) messages displayed in the browser to end users

docker container exec govready-q-0.9.0 tail_logs
Replace "govready-q-0.9.0" with name of your container or use container id

tail_logs takes the same arguments as Unix tail. For instance, add -n 1000 to see the most recent 1,000 log lines, or
add -f to continue to output the logs as the log files grow.

most recent 200 lines of logs
docker container exec govready-q-0.9.0 tail_logs -n 200

real-time display of logs
docker container exec govready-q-0.9.0 tail_logs -f

The log files can also be accessed by mounting /var/log with a Docker bind-mount or as a volume (and that’s the only
way to see the logs if docker container exec cannot be used in your environment).

macOS

Installing on macOS

GovReady-Q calls requires Python 3.6 or higher to run and several Unix packages to provide full functionality. Install
the Homebrew package manager (https://brew.sh) to easily install Unix packages on macOS. Homebrew will install
all packages in your userspace and not change native macOS Python or other libraries.

install Homebrew package manager
/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
→˓master/install)"

Now install Python3 and the required Unix packages.

install dependencies using brew
brew install python3

install other packages:
brew install unzip graphviz pandoc selenium-server-standalone magic libmagic
brew cask install wkhtmltopdf

Installing GovReady-Q

Clone GovReady-Q source code and install.

clone GovReady-Q
git clone https://github.com/govready/govready-q
cd govready-q

checkout the 0.9.0.dev (or desired 0.9.0.rc-0xx branch)
git checkout 0.9.0.dev

install Python 3 packages
pip3 install --user -r requirements.txt

(continues on next page)

8.5. Installing 0.9.0 125

https://brew.sh

govready-q Documentation, Release 0.8.6

(continued from previous page)

install Bootstrap and other vendor resources locally
./fetch-vendor-resources.sh

Run the final setup commands to initialize a local Sqlite3 database in local/db.sqlite to make sure everything is OK so
far:

run database migrations (sqlite lite database used by default)
python3 manage.py migrate

load a few critical modules
python3 manage.py load_modules

create superuser with initial account if setting up a new database
skip if you pass environment variables to connect to a persistent database
python3 manage.py first_run

Start GovReady-Q

run the server
python3 manage.py runserver

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

RHEL/CentOS 7

Installing on RHEL/CentOS 7

Instructions applicable RHEL 7, CentOS 7 and Amazon Linux 2.

GovReady-Q calls requires Python 3.6 or higher to run and several Linux packages to provide full functionality.

if necessary, enable EPEL and IUS repositories
rpm -i https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm https://
→˓rhel7.iuscommunity.org/ius-release.rpm

install dependencies
sudo yum install \
unzip python36-pip python36-devel \
graphviz \
pandoc xorg-x11-server-Xvfb wkhtmltopdf \

optional install gcc to build the uWSGI Python package.
sudo yum install gcc

optional insall of postgress and/or mysql
sudo yum install postgresql mysql-devel

GovReady-Q calls out to git to fetch apps from git repositories, but that requires git version 2 or later because of the
use of the GIT_SSH_COMMAND environment variable. RHEL stock git is version 1. Switch it to version 2+ by
using the IUS package:

126 Chapter 8. Version 0.9.0

http://localhost:8000/

govready-q Documentation, Release 0.8.6

if necessary, remove any git currently installed
yum remove git
install git2u
yum install git2u

Installing GovReady-Q

Clone GovReady-Q source code and install.

clone GovReady-Q
git clone https://github.com/govready/govready-q
cd govready-q

checkout the 0.9.0.dev (or desired 0.9.0.rc-0xx branch)
git checkout 0.9.0.dev

install Python 3 packages
pip3 install --user -r requirements.txt

install Bootstrap and other vendor resources locally
./fetch-vendor-resources.sh

Run the final setup commands to initialize a local Sqlite3 database in local/db.sqlite to make sure everything is OK so
far:

run database migrations (sqlite lite database used by default)
python3 manage.py migrate

load a few critical modules
python3 manage.py load_modules

create superuser with initial account
skip if you pass environment variables to connect to a persistent database
python3 manage.py first_run

python3 manage.py first_run

Start GovReady-Q

run the server
python3 manage.py runserver

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

Ubuntu 16.04

8.5. Installing 0.9.0 127

http://localhost:8000/

govready-q Documentation, Release 0.8.6

Installing on Ubuntu

Instructions provide basic guidance on setting up GovReady-Q on an Ubuntu 16.04 server with Nginx. These com-
mands should be run from the root directory of the GovReady-Q code repository.

GovReady-Q calls requires Python 3.6 or higher to run and several Linux packages to provide full functionality.

upgrade apt-get
apt-get update && apt-get upgrade -y

install dependencies
apt-get install -y \

unzip \
python3 python-virtualenvpython3-pip \
python3-yaml \
nginx uwsgi-plugin-python3supervisor \
memcached \
graphviz

optional install gcc to build the uWSGI Python package.
sudo yum install gcc

optional insall of postgress and/or mysql
apt-get install -y postgresql mysql-devel

Installing GovReady-Q

Clone GovReady-Q source code and install.

clone GovReady-Q
git clone https://github.com/govready/govready-q
cd govready-q

checkout the 0.9.0.dev (or desired 0.9.0.rc-0xx branch)
git checkout 0.9.0.dev

install Python 3 packages
pip3 install --user -r requirements.txt

install Bootstrap and other vendor resources locally
./fetch-vendor-resources.sh

Run the final setup commands to initialize a local Sqlite3 database in local/db.sqlite to make sure everything is OK so
far:

run database migrations (sqlite lite database used by default)
python3 manage.py migrate

load a few critical modules
python3 manage.py load_modules

create superuser with initial account
skip if you pass environment variables to connect to a persistent database
python3 manage.py first_run

128 Chapter 8. Version 0.9.0

govready-q Documentation, Release 0.8.6

Start GovReady-Q

run the server
python3 manage.py runserver

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

Windows

Installing on Windows (with Docker)

GovReady-Q can only be installed on Windows using Docker.

Make sure you first install Docker (https://docs.docker.com/docker-for-windows/install/).

Start

Run the docker container in detached mode
docker container run --name govready-q --detach -p 8000:8000 govready/govready-q-0.9.
→˓0.dev

Create admin account and organization data
Skip if you pass environment variables to connect to a persistent database
docker container exec -it govready-q first_run

Stop, start container
docker container stop govready-q
docker container start govready-q

View logs - useful if site does not appear
docker container logs govready-q

To destroy the container and all user data entered into Q
docker container rm -f govready-q

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

8.6 Upgrading to 0.9.0 from 0.8.x

Backup your database before upgrading to 0.9.0. Release 0.9.0 performs database changes that makes rolling
back difficult.

See Migration Guide for GovReady-Q (0.8.6 to 0.9.0).

8.6. Upgrading to 0.9.0 from 0.8.x 129

http://localhost:8000/
https://docs.docker.com/docker-for-windows/install/
http://localhost:8000/
migration_guide_086_090.html

govready-q Documentation, Release 0.8.6

8.7 Adding and Managing “Compliance Apps” in 0.9.0

GovReady-Q wll load a small set of example questionnaires as part of the python manage.py first_run
command during installation.

GovReady-Q must be configured by an administrator to load additional compliance apps (e.g., assessments and ques-
tionnaires) from one or more sources, which can be local directories or remote git repositories. Full administrative
privileges are assigned to original user account created when executing python manage.py first_run during
installation.

App Sources are configured in the Django admin at the URL /admin on your GovReady-Q domain under App
Sources:

Each App Source points GovReady-Q to a directory or repository of compliance apps.

130 Chapter 8. Version 0.9.0

assets/appsources_list.png

govready-q Documentation, Release 0.8.6

The first App Source field is the Slug. The Slug is a short name you assign to the App Source to distinguish it from
other App Sources. The Slug is used to form URLs in GovReady-Q’s compliance apps catalog, so it may only contain
letters, numbers, dashes, underscores, and other URL path-safe characters.

There are four types of App Sources: local directories, remote git repositories using HTTP which are typically public
repositories, remote git repositories using SSH which typically use SSH deploy keys for access, and remote GitHub
repositories using a GitHub username and password for access.

8.7.1 Local Directory

The Local Directory source type directs GovReady-Q to load compliance apps from a directory on the same machine
GovReady-Q is running on. (When deploying with Docker, that’s on the container filesystem unless a path has been
mounted to a volume or to the host machine.)

In the Path field, enter the path to a local directory containing compliance apps. This path is expected to contain a
sub-directory for each compliance app contained in this source. For instance, if you have this directory layout:

.
home

user
compliance_apps

myfirstapp
app.yaml

mysecondapp
app.yaml

then your Path would be /home/user/compliance_apps.

The path can be absolute or relative to the path in which GovReady-Q is installed.

8.7. Adding and Managing “Compliance Apps” in 0.9.0 131

assets/appsource_git_https.png

govready-q Documentation, Release 0.8.6

8.7.2 Git Repository over HTTPS

The Git Repository over HTTPS source type is for git repositories, such as on GitHub or GitLab, that can be cloned
using an HTTPS URL. These repositories are typically public, or in an enterprise environment public within your
organization’s network.

Paste the HTTPS git clone URL — such as https://github.com/GovReady/govready-apps-dev — into the URL field.
Here’s what that looks like:

The other fields can be left blank.

The Path field optionally specifies a sub-directory within the repository in which the compliance apps are stored if
they are not stored in the root of the repository. For instance if the repository has a directory layout similar to:

.
github.com/organization/repository

apps
myfirstapp

app.yaml
mysecondapp

app.yaml

then set the Path field to apps.

If the compliance apps are not in the repository’s default branch (i.e. something other than the typical master default
branch), then set the Branch field to the name of the branch to read the compliance apps from.

You can use HTTPS to access private repositories by placing your username and password or personal access token
into the URL, such as:

https://username:password@github.com/GovReady/govready-apps-dev

Since this requires user credentials, it should be avoided for production deployments in favor of using Git Repository
over SSH (see below).

132 Chapter 8. Version 0.9.0

https://github.com/GovReady/govready-apps-dev
assets/appsource_git_https.png
https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/

govready-q Documentation, Release 0.8.6

8.7.3 Git Repository over SSH

If your git repository is private and accessible using an SSH URL (which typically looks like
git@github.com:organization/repository.git) and an SSH public/private keypair, such as with GitHub or GitLab
deploy keys, then use the Git Repository over SSH source type.

Create a new SSH key for your GovReady-Q instance to be used as a deploy key:

ssh-keygen -q -t rsa -b 2048 -N "" -C "_your-repo-name_-deployment-key" -f ./repo_
→˓deploy_key

Your GovReady-Q instance will hold the private key half of the newly generated keypair, and your source code control
system will hold the public key.

Back in the Django admin, set the Source Type to Git Repository over SSH. Paste the git clone SSH URL into the
URL field. Then open the newly generated file repo_deploy_key and paste its contents into the SSH Key field.
Here’s what that looks like:

The other fields can be left blank. Path and Branch can be set the same as with the Git Repository over HTTPS
source type (see above).

Copy the public key in the newly generated file repo_deploy_key.pub into the deploy keys section of your
source code repository. Here is what that looks like on GitHub:

8.7. Adding and Managing “Compliance Apps” in 0.9.0 133

mailto:git@github.com
assets/appsource_git_ssh.png

govready-q Documentation, Release 0.8.6

Make the key read only by leaving “Allow write access” field unchecked and click Add the key to save the key.

8.7.4 GitHub Repository using the GitHub API

This source type can be used to access private GitHub repositories using a GitHub username and password or a
username and personal access token.

Set the Repository field to the organization name and repository name, separated by a slash, as in the repository’s
URL following github.com/. In Other Parameters, paste a small YAML-formatted document holding a
GitHub username and password or username and personal access token, formatted as follows:

auth:
user: 'myusername'
pw: 'mypassword'

The other fields can be left blank. Branch can be set the same as with the Git Repository over HTTPS source type
(see above).

Since this source type requires user credentials, it should be avoided for production deployments in favor of using Git
Repository over SSH.

134 Chapter 8. Version 0.9.0

assets/github_deploy_key_add.png
https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/

govready-q Documentation, Release 0.8.6

Compliance Apps

Compliance Apps are the actual assessments and questionnaires, the “data packs”, that drive GovReady-Q.

The AppSource admin now lists all of the apps provided by the source and has links to import new app versions
into the database and to see the app versions already in the database by version number. When the App Source is
defined, additional options appear on the database App Source admin page to selectively add individual projects and
assessments from the App Source repository to the be published on GovReady-Q. Any time the individual admin page
for an App Source is viewed, the App Source is rescanned and new versions of the apps are displayed to be selectively
added to be available to users on GovReady-Q.

When starting a compliance app (i.e. creating a new project), we no longer have to import the app from the remote
repository — instead, we create a new Project and set its root_task to point to a Module in an AppVersion already in
the database.

App loading is refactored in a few places. The routines for getting app catalog information from the remote app data
are removed since now we only need it for apps already stored in the database.

The AppSource admin’s approved app lists form is removed since adding apps into the database is now an administra-
tive function and the database column for it is dropped.

AppVersion now has a boolean field for whether the instance should be included in the compliance apps catalog for

8.7. Adding and Managing “Compliance Apps” in 0.9.0 135

assets/appsource_apps.png

govready-q Documentation, Release 0.8.6

users to start new projects with that app.

136 Chapter 8. Version 0.9.0

CHAPTER

NINE

MIGRATION GUIDE FOR GOVREADY-Q V0.8.6 TO V0.9.0

9.1 Major Changes between v0.8.6 and v0.9.0

Changes GovReady-Q users will encounter in v0.9.0:

• Organization subdomains are no longer used - everything is on the main domain.

• Individual Questionnaires/Assessments from an App Source must now be explicitly added to the catalog via the
Django admin page. More information can be found in the version 0.9.0 section of the GovReady-Q documen-
tation.

• Assessments are referred to as “Projects” in the UI.

• “Projects” are organized into “Portfolios.” Every Project belongs to exactly one Portfolio.

• Users can be added to Portfolios and be granted different permissions in Portfolios via an improved permission
model.

v0.8.6 v0.9.0 What migrating does
Subdomains. Single domain. Single domain is used as per host param in local/

environment.json file or Docker config params.
Organizations asso-
ciated with different
subdomains.

Single “master” or-
ganization.

A “Portfolio” is created for each Organization with the same name
as the Subdomain. Organizations continue to exist in database, but
are not used.

Users are associated
with multiple subdo-
main organizations.

All users associ-
ated with single in-
stance.

Preserves users.

User have different
profiles for each sub-
domain organization.

User has single
profile.

First profile is kept and can be edited by user.

User “is staff” and
“is super user” set in
Django Admin.

User “is staff” and
“is super user” set
in Django Admin.

Roles preserved, see Roles and Permissions in v0.9.0 section.

Started and com-
pleted apps.

Started and com-
pleted apps.

All existing apps/questionnaires are preserved. Each questionnaire
becomes associated with the “Portfolio” having the same name as
the Organization to which the project was previously associated.

User signs in under
each subdomain.

User signs in once. Subdomain associates are removed.

Complete list of changes: https://github.com/GovReady/govready-q/blob/0.9.0.dev/CHANGELOG.md.

137

https://www.google.com/url?q=https://github.com/GovReady/govready-q/blob/0.9.0.dev/CHANGELOG.md&sa=D&ust=1567539997944000

govready-q Documentation, Release 0.8.6

9.2 Migration Process

9.2.1 General Guidelines

• Make sure your live data is backed up, and can be found and restored properly, before, during, and after the
migration.

• Do test migrations on test servers first, to ensure you understand the process and have worked out any kinks,
before working on production servers.

• Check for customizations, and preserve or modify them as needed.

9.2.2 Back Up Your Production Data

• Ensure that you have a backup of your production data, and that it is safe, and will be available for a successful
restore.

9.2.3 Read the Documentation

• Familiarize yourself with the migration process before conducting the first test migration.

• Make sure GovReady-Q official documentation is working for you.

9.2.4 Do a Test Migration

• Use test data that will model and exercise the same features as your production data.

• Use a clean install of the version you run in production, with test data installed.

• Migrate your customizations to the test platform.

• Perform the upgrade to v0.9.0.release.

• Test to ensure the upgrade performed properly. Keep notes as you test.

• Repeat until you’re comfortable with the process and results.

• Optionally have selected end-users sign into the upgraded test instance to perform their own tests.

9.2.5 Distribute a Migration Plan

• Create a migration plan. Include user impacts, timelines, contingency plans, and technical details (perhaps in a
separate technical plan).

• Confirm that your colleagues who are responsible, accountable, consulted, and informed about the migration
are satisfied with the plan.

• Distribute the plan to anybody affected.

• When migration starts, communicate to users that migration is starting, and keep a communication line with
them open.

138 Chapter 9. Migration Guide for GovReady-Q v0.8.6 to v0.9.0

govready-q Documentation, Release 0.8.6

9.2.6 Do the Production Migration for Deployments with Source Code

• Take your GovReady-Q instance offline.

• Back up the most recent version of the production database.

• Test a restore of most recent version of the database.

• Update code to version 0.9.0.release.

• Run pip install -r requirements.txt to get new libraries.

• Update any template and file customizations in your workstream.

• Run python manage.py migrate to update your database schema.

• Run python manage.py runserver to run your updated instance.

9.2.7 Do the Production Migration for Deployments with Docker/Containers

• Take your GovReady-Q instance offline.

• Back up the most recent version of the production database.

• Test a restore of most recent version of the database.

• Synchronize your container customizations to produce a new version of your container.

• Deploy container running version 0.9.0 with environment variable ``DB_BACKED_UP_DO_UPGRADE``
set to “True”. (This special environment variable is required to avoid accidental running of database migrations
before database has been backed up.)

• Docker will automatically run migrations as part of deployment.

9.2.8 Migration Finalization and Testing

• Test the new instance.

• Back up the newly migrated production database.

9.2.9 Post Migration Clean Up

• Mark all old Notifications emailed as True. (v0.9.0 notification checks emailed status of notifications and sets
emailed to True after email is sent.)

• Review Help Squad, Reviewers, and Administrators.

– The migration converts Organizations to Portfolios.

– Help Squad, Reviewers, and Organization admins are only preserved on the “main” organization (e.g., first
organization created).

– The migration does not modify the Help Squad or Reviewers.

– Organization Admins are associated with the “main” organization.

• You should review who has these permissions and adjust accordingly after migrating.

• Release the production instance to users.

9.2. Migration Process 139

govready-q Documentation, Release 0.8.6

140 Chapter 9. Migration Guide for GovReady-Q v0.8.6 to v0.9.0

govready-q Documentation, Release 0.8.6

9.3 Roles and Permissions in v0.9.0

Permis-
sion/Role
Name

Description What Happens During Migration

Orga-
nization >
get_who_can_read

A user can see an Organization if: they
have read permission on any Project
within the Organization, they are an edi-
tor of a Task within a Project within the
Organization (but might not otherwise be
a Project member), they are a guest in any
Discussion on TaskQuestion in a Task in
a Project in the Organization.

A Portfolio is created for every organization that exists.

project-
member-
ship

See Project > has_read_priv See below.

Project >
has_read_priv
(Inverse is
Project >
get_all_participants)

Team members + anyone with read privs
to a task within this project + anyone who
is a guest in discussion within this project.

See below.

Project >
is_admin

Person flagged as project admin in Pro-
jectMembership.

Grant project_delete permission on project and portfo-
lio_owner permission for portfolio for which project is
a part

Project >
is_member
Project >
editor_of
task(s)Project
> discus-
sion_guest_in
discus-
sion(s)

Various permissions in a project. Grant project_view, project_add, project_change, for
project of which project is a part; Grant Portfo-
lio_view, portfolio_add, portfolio_change for which
project is a part after migration.

task_editor The user that has primary responsibility
for completing this Task.

Grant project_view, project_add, project_change, for
project of which task is a part; Grant Portfolio_view,
portfolio_add, portfolio_change for which task is a
part after migration.

help_squad Receives all discussion messages Not modified by migration
reviewer Can set review status of answers. Not modified by migration
superuser Django designated superuser. Not modified by migration
Folder per-
missions

A folder object exists but is not used. Not modified by migration

portfo-
lio_owner

Permission on portfolio object, can invite
others to portfolio and can make others to
portfolio owner

If user was project_membership and had
project_membership admin flag True, user is made
portfolio owner.

Portfo-
lio_view,
portfo-
lio_add,
portfo-
lio_delete,
portfo-
lio_change

Permissions on Portfolio objects. Cur-
rently everyone who has one of these has
all of these permissions.

Every user gets a portfolio with their name for which
user is the portfolio_owner. For every organization, a
portfolio is created with the same name and associating
the organization projects with the portfolio. Users get
access to the projects.

project_view,
project_add,
project_change,
project_delete

Permissions on Project objects. Currently
everyone who has one of these has all of
these permissions.

If user has project_membership on project, user
gets project_view, project_add, project_change.
If user has project_membership on project and
project_membership admin flag True, user also gets
project_delete. If user has task object for a project,
user gets project_view, project_add, project_change.
If user is a guest of a discussion object for a project,
user gets project_view, project_add, project_change.

9.3. Roles and Permissions in v0.9.0 141

govready-q Documentation, Release 0.8.6

142 Chapter 9. Migration Guide for GovReady-Q v0.8.6 to v0.9.0

CHAPTER

TEN

INDICES AND TABLES

• genindex

• modindex

• search

143

	About GovReady-Q
	Deploying GovReady-Q
	Permissions
	Authoring Compliance Apps
	Automation API
	Data Design Guide
	Testing
	Version 0.9.0
	Migration Guide for GovReady-Q v0.8.6 to v0.9.0
	Indices and tables

